Professor Chiranjib Mukherjee 3/17/2016

Compactness, Large Deviations
and Statistical Mechanics

Date: 3/17/2016
Time: 3:30PM-5:00PM
Place: 315 Armstrong Hall

Abstract: In a reasonable topological space, large deviation estimates essentially deal with probabilities of events that are asymptotically (exponentially) small, and in a certain sense, quantify the rate of these decaying probabilities. In such estimates, lower bound for open sets and upper bound for compact sets are essentially local estimates. However, upper bounds for all closed sets often require compactness of the ambient space or stringent technical assumptions (e.g., exponential tightness), which is often absent in many interesting problems which are motivated by questions arising in statistical mechanics (for example, distributions of occupation measures of Brownian motion in the full space Rd).

Motivated by problems that carry certain shift-invariant structure, we present a robust theory of “translation-invariant compactification” of orbits of probability measures in Rd. This enables us to prove a desired large deviation estimates on this “compactified” space. Thanks to the inherent shift-invariance of the underlying problem, we are able to apply this abstract theory painlessly to solve a long standing problem in statistical mechanics, the mean-field polaron problem.

This is based on joint work with S. R. S. Varadhan (New York).

Date, Location: 

Abbey Bourdon 3/16/2016

Rational Torsion on CM
Elliptic Curves

Date: 3/16/2016
Time: 3:30PM-5:00PM
Place: 315 Armstrong Hall

Abstract: Let E be an elliptic curve defined over a number field F. By a classical
theorem of Mordell and Weil, the collection of points of E with
coordinates in F form a finitely generated abelian group. We seek to
understand the subgroup of points with finite order. In particular,
given a positive integer d, we would like to know precisely which
abelian groups arise as the torsion subgroup of an elliptic curve
defined over a number field of degree d, and we would like to know how
the size of the torsion subgroup grows as d increases. After providing a
brief introduction to elliptic curves and summarizing prior results, I
will discuss recent progress on these problems for the special class of
elliptic curves with complex multiplication (CM).

Abbey is a candidate for a position in our department.

Date, Location: 

Hung P. Tong-Viet 3/15/2016

Derangements in primitive permutation groups and applications

Date: 3/15/2016
Time: 3:30PM-5:00PM
Place: 315 Armstrong Hall

Hung P. Tong-Viet

Abstract: A derangement (or fixed-point-free permutation) is a permutation with no
fixed points. One of the oldest theorems in probability, the Montmort
limit theorem, says that the proportion of derangements in finite
symmetric groups Sn tends to e−1 when n tends to infinity. A classical
theorem of Jordan implies that every finite transitive permutation group
of degree greater than 1 contains derangements. This result has many
applications in number theory, topology, game theory, combinatorics, and
repre- sentation theory. There are several interesting questions on the
order and the number of derangements that have attracted much attention
in recent years. In this talk, I will discuss some of these questions
and I will report on recent results on finite primitive permutation
groups with some restriction on derangements (joint with T.C. Burness)
and some application to modular representation theory (joint with M.L.

Date, Location: 

RUME Colloquium

Opportunity to learn from lectures in advanced mathematics

Date: 3/11/2016
Time: 3:30PM-4:30PM
Place: 315 Armstrong Hall

Tim Fukawa-Connelly

Abstract: In this report, we synthesize studies that we have conducted on how students interpret mathematics lectures. We present a case study of a lecture in which students in an advanced mathematics lecture did not comprehend the points that their professor intended to convey. We present three accounts for this: students’ note-taking strategies, their beliefs about proof, and their understanding of the professor’s colloquial mathematics. Finally, we explore via a larger-scale study, lecturing practices and student-note-taking behaviors. We refute claims that mathematicians do not present intuitive or conceptual explanations, and demonstrate that students are unlikely to take meaning away from these more informal aspects of lecture.

Date, Location: 

Professor Michael Schroeder 3/10/2016

One Row, One Column,
One Symbol

Date: 3/10/2016
Time: 3:45PM-4:45PM
Place: 315 Armstrong Hall

Abstract: Let n be a positive integer and and r,c,s each be integers in {1,2,...,n}. A partial latin square P satisfies the RCS property if for every ordered triple (x,y,z) belonging to P, either x=r, y=c, or z=s. Partial latin squares of this type were introduced by Casselgren and Haggkvist in a 2013 paper, in which they show that some infinite families of partial latin squares with the RCS property are completable. In this talk, we classify when any partial latin square with the RCS property is completable. This is joint work with Jaromy Kuhl of the University of West Florida.

Date, Location: 

Professor Maria Emilianenko 3/4/2016

Kinetic Modeling of
Coarsening in Polycrystals

Date: 3/4/2016
Time: 1:30PM-2:30PM
Place: 315 Armstrong Hall

Abstract: When microstructure of polycrystalline materials undergoes coarsening driven by the elimination of energetically unfavorable crystals, a sequence of network transformations, including continuous expansion and instantaneous topological transitions, takes place. This talk will be focused on recent advances related to the mathematical modeling of this process. Two types of approaches will be discussed, one aimed at simulating the evolution of individual crystals in a 2-dimensional system via a vertex model focused on triple junction dynamics, and one providing a kinetic Boltzmann-type description for the evolution of probability density functions. Predictions based on the new kinetic mesoscale model will be discussed and contrasted with those obtained by large-scale simulations for several classes of interfacial energies.

Date, Location: 

Professor Lianying Miao 2/22/2016

On the extremal values of the
eccentric distance sum of trees

Date: 2/22/2016
Time: 3:30PM-5:00PM
Place: 315 Armstrong Hall

Lianying Miao

Abstract:Let G = (V,E) be a simple connected graph. The eccentricity ε(v) of a vertex v is the maximum distance from v to any other vertex. The eccentric distance sum of G is defined as ξd(G) = Pv∈V ε(v)D(v), where D(v) = Pu∈V d(u,v) is the sum of all distance from the vertex v.

In this paper, we continue to study the eccentric distance sum of trees. The trees of order n with domination number at most dn

3e are characterized.

Date, Location: 

Professor Mokshay Madiman 1/27/2016

Entropy and the additive combinatorics of probability densities
on locally compact abelian groups

Date: 1/27/2016
Time: 3:30PM-4:50PM
Place: 315 Armstrong Hall

Mokshay Madiman

Abstract: Additive number theory contains a number of so-called
"sumset inequalities" that relate the cardinalities of various finite
subsets of an abelian group G, for instance, the sumset A+A and the
difference set A-A of a finite subset A of G. It also contains
“inverse" results such as Freiman’s theorem, which asserts that sets A
such that A+A is relatively small must have some "additive structure".
Motivated by considerations coming from multiple directions including
probability theory, combinatorics, information theory, and convex
geometry, we explore probabilistic analogues of such results in the
general setting of locally compact abelian groups.

For instance, we show that for independent, identically distributed random variables X
and X’ whose distribution has a density with respect to Haar measure
on a locally compact abelian group G, the entropies of X+X' and X-X'
strongly constrain each other. We will also discuss stronger
statements that can be made for specific groups of interest, such as
R^n, the integers, and finite cyclic groups.

Based on (multiple) joint works with Ioannis Kontoyiannis (Athens Univ. of Economics),
Jiange Li (Univ. of Delaware), Liyao Wang (Yale Univ.), and Jaeoh Woo
(Univ. of Texas, Austin).

Date, Location: 

Professor Hao Shen 10/29/2015

Resolvable group divisible designs and (k,r)-colorings of complete graphs

Date: 10/29/2015
Time: 4:30PM-5:30PM
Place: 315 Armstrong Hall

Hao Shen

Abstract: Let k and r be given positive integers, a
(k,r)-coloring of a complete graph K is a coloring of the edges of K with r colors such that all monochromatic connected subgraphs have at most k vertices. The Ramsey number f(k,r) is defined to be the smallest u such that the complete graph with u vertices does not admit a (k,r)-coloring.

A group divisible design is called resolvable if all the blocks can be partitioned into parallel classes. In this talk, we will introduce the known results on the existence of resolvable group divisible designs and their applications in the study of (k,r)-colorings of complete graphs.

Date, Location: 

Professor Carsten Conradi 10/1/2015

Steady states of polynomial ODEs arising in biology with application
to multisite phosphorylation

Date: 10/1/2015
Time: 3:30PM-4:30PM
Place: 315 Armstrong Hall

Carsten Conradi

Abstract:Polynomial Ordinary Differential Equations are an important tool in many areas of quantitative biology. Due to high measurement uncertainty, few experimental repetitions and a limited number of measurable components, parameters are subject to high uncertainty and can vary in large intervals. One therefore effectively has to study families of parametrized polynomial ODEs. In this talk a class of ODEs is discussed, where the steady states can be parametrized by solutions of parameter independent linear inequality systems. To this class belong, for example, multisite phosphorylation systems. For a special instance of this subclass, one can formulate parameter conditions that guarantee the existence of three steady states.

Date, Location: 


Subscribe to