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Abstract

If H is a 3-graph, then ex(n;H) denotes the maximum number
of edges in a 3-graph on n vertices containing no sub-3-graph iso-
morphic to H. Let S(n) denote the 3-graph on n vertices obtained
by partitioning the vertex set into parts of sizes

⌈
n
2

⌉
and

⌊
n
2

⌋
and

taking as edges all triples that intersect both parts. Let s(n) de-
note the number of edges in S(n). Let F (3, 3) denote the 3-graph
{123, 145, 146, 156, 245, 246, 256, 345, 346, 356}. We prove that if n 6= 5
then ex(n;F (3, 3)) = s(n) and that the unique optimal 3-graph is
S(n).

Key words: Turan number, hypergraph, F(3,3)

1 Introduction

In this paper, we generally use the standard notation. An r-graph is a collec-
tion of subsets of size r of a finite set V , called vertices. We sometimes identify
a 3-graph with its edge set. We use [n] to denote the set {1, 2, . . . , n}, X(r)

to denote the set of all r-subsets of a set X and e(H) to denote the number
of edges in an r-graph H.
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Given an r-graph H, the Turán number of H, ex(n;H), is the maximum
number of edges in an r-graph on n vertices that does not contain a copy
of H (we say such a graph is H-free). A simple averaging argument shows
that ex(n;H)/

(
n
r

)
is a non-increasing function of n, so its limit as n goes to

infinity exists, is denoted π(H), and is called the Turán density of H. It is
well known (see, for example, [4]) that if H is an ordinary graph (r = 2)
then π(H) depends only on the chromatic number of H. Turán’s theorem [4]
gives the exact value of ex(n;Km) and the unique Km-free graph with the
maximum number of edges.

Much less is known when r > 2. For both K
(3)
4 = {123, 124, 134, 234} and

K−4 = {123, 124, 134} there are simple constructions which provide a lower
bound ([1] and [5]) and using Razborov’s flag algebra approach there has
been recent progress in lowering the best upper bound. However, the precise
values of π(K

(3)
4 ) and π(K−4 ) have yet to be determined.

In fact, it is only within the last dozen years or so that an exact non-zero
value of π(H) has been determined for any r-graph H with r > 2. The break-
through was with the Fano plane F = {124, 235, 346, 457, 561, 672, 713}. De
Caen and Füredi [3] developed a method using linkgraphs (explained in sec-
tion 2) which reduced much of the problem to a question about edge densities
of ordinary multigraphs. They showed that π(F ) = 3

4
and the method, with

modifications, was later used independently in [8] and [13] to determine,
for sufficiently large n, the exact value of ex(n;F ) and to show the optimal
3-graph is unique.

The Turán problem has been completely solved for F5 = {123, 124, 345},
a 3-graph which first received attention in a theorem of Bollobás proving a
conjecture of Katona, because forbidding F5 andK−4 is equivalent to requiring
that there do not exist three edges such that one contains the symmetric
difference of the other two. Frankl and Füredi [6] later showed that π(F5) = 2

9

and that, for sufficiently large n, the complete equitripartite graph is the
unique F5-free 3-graph with ex(n;F5) edges. Keevash and Mubayi [11] used
the de Caen-Füredi method to show the same for all n greater than 32, while
Goldwasser [9] sharpened the method and found, for all n, all F5-free graphs
with ex(n;F5) edges (there is a unique one for all n ≥ 5, except there are
two for n = 10).

If p and q are positive integers Mubayi and Rödl [14] defined F (p, q) to
be the 3-graph on p+q vertices whose edges are all the 3-sets which intersect
a fixed p-set of vertices in 1 or 3 points. They showed π(H) = 3

4
for several

3-graphs in H in F (p, q), or related to a 3-graph in F (p, q), for certain small
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values of p and q. Among these is F (3, 3), the 3-graph on [6] with 10 edges,
the “special” edge 123, and the nine 3-subsets of [6] which intersect 123 in
precisely one point.

In this paper we determine the exact value of ex(n;F (3, 3)) and show
that, for each n, there is a unique F (3, 3)-free 3-graph with ex(n;F (3, 3))
edges. That makes F (3, 3) the second non-trivial 3-graph H (F5 is the other)
such that all H-free 3-graphs with ex(n;H) edges have been determined for
all n (the unique maximum Fano plane-free graph has been determined for
sufficiently large n). After a draft of this paper was written we discovered
that Keevash and Mubayi, in [12], recently determined ex(n;F (3, 3)) for all
n, though they did not show the uniqueness of the optimal 3-graph.

One of the main ingredients in our proof is Proposition 2, a sharpened
version of a lemma used in [3], [8], and [13]. The sharpened version is needed
to prove uniqueness of the optimal configuration.

For n ≥ 3, let S(n) denote the 3-graph obtained by partitioning [n] into
parts of sizes

⌊
n
2

⌋
and

⌈
n
2

⌉
and taking as edges all triples that intersect both

parts. Let s(n) denote the number of edges in S(n). It is easy to calculate
that

s(n) =

⌊
3

4
· n

n− 1

(
n

3

)⌋
=

⌊
n2(n− 2)

8

⌋
.

The following is the main result of this paper.

Theorem 1. Let H be an F (3, 3)-free 3-graph on n 6= 5 points. Then e(H) ≤
s(n) with equality holding if and only if H is isomorphic to S(n).

F (3, 3) is not 2-colorable, meaning that in any 2-coloring of its vertices
there must be a monochromatic edge (further discussion in Section 4). That
there is no 3-3 partition of [6] such that each edge intersects both parts
follows because F (3, 3) has as an edge precisely one of each of the ten pairs
consisting of a 3-subset of [6] and its complement. Since S(n) is 2-colorable,
clearly it is F (3, 3)-free.

2 Definitions and Preliminaries

We define a family G (n) of multigraphs (r = 2) on n vertices as follows.
A multigraph G with n vertices is in G (n) if and only if the following are
satisfied:
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1. For each x, y ∈ V (G), the multiplicity µG(x, y) = µ(x, y) of xy is 2,3
or 4.

2. IfM(G) is the (ordinary) graph with V (M(G)) = V (G) andE(M(G)) =

{xy ∈ E(G) | µG(x, y) = 4} then

(a) If n is even, then each component of M(G) is a complete equibi-
partite graph.

(b) If n is odd, then one component of M(G) is a complete bipartite
graph with part sizes differing by 1 (possibly of sizes 0 and 1) and
all other components are complete equibipartite.

3. For each x, y in the same partition part of a component of M(G),
µG(x, y) = 2.

4. For each x, y in different components of M(G), µG(x, y) = 3.

It is easy to check that each G in G (n) has 3
(
n
2

)
+
⌊
n
2

⌋
edges and that

each set of 3 vertices spans at most 10 edges. A graph in G (n) could have
as few as

⌊
n
2

⌋
edges of multiplicity 4 (they would form a maximum matching

and all other edges would have multiplicity 3) and as many as
⌊
n2

4

⌋
edges of

multiplicity 4 (forming Kbn
2
c,dn

2
e with all other edges having multiplicity 2).

We letG∗n denote this latter multigraph (soM(G∗n) is complete equibipartite).
If p(n) denotes the number of partitions of n, it is easy to see that the number
of isomorphically distinct multigraphs in G (n) is p(k) if n = 2k and

∑k
i=0 p(i)

if n = 2k + 1.

2.1 Main Proposition

Proposition 2. Let G be a multigraph on n ≥ 3 vertices where each set of
3 vertices spans at most 10 edges. Then

e(G) ≤ 3

(
n

2

)
+
⌊n

2

⌋
. (1)

Furthermore if n ≥ 5 then equality holds if and only if G ∈ G (n).

We do the proof in two parts, first the inequality, then the characterization
of equality.
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Proof Of Inequality In Proposition 2

First we prove inequality (1) by induction on n. It is obviously satisfied if
n = 3. It is also obviously satisfied if no edge has multiplicity greater than
3. So we assume n > 3 and µ(x, y) = t ≥ 4 for some edge xy of G. For each
z in V (G) \ {x, y}, µ(x, z) + µ(y, z) ≤ 10 − t, so if p is the total number of
edges incident to x or y (or both) then

p ≤ (10− t)(n− 2) + t (2)

= 10(n− 2)− t(n− 3)

≤ 10(n− 2)− 4(n− 3) (3)

= 6n− 8.

Hence, by the inductive hypothesis,

e(G) ≤ 3

(
n− 2

2

)
+

⌊
n− 2

2

⌋
+ 6n− 8

= 3

(
n

2

)
+
⌊n

2

⌋
.

Characterization Of Equality In Proposition 2

We prove the statement about equality holding in inequality (1) for n ≥ 5
by induction on n. We can do the base cases, n = 5 and n = 6, and the
inductive step simultaneously.

Assume n ≥ 5 and equality holds in (1). Then equality must hold in (3),
so no multiplicity can be more than 4. Let x and y be vertices such that
µ(x, y) = 4. Since equality holds in (1) and (2), for each z ∈ V (G) \ {x, y},
both µ(x, z) and µ(y, z) are equal to 3 or one is equal to 4 and the other is
equal to 2. Moreover, the multigraph G′ = G \ {x, y} has precisely 3

(
n−2
2

)
+⌊

n−2
2

⌋
edges.

If n = 5, then G′ has 10 edges, the multiplicities must be 4,4,2 or 4,3,3 and
in either case G′ ∈ G (3). If n = 6, then G′ has 20 edges, the multiplicities
must be 4,4,4,4,2,2 or 4,4,3,3,3,3 (each pair of disjoint edges have the same
multiplicities) and, in either case, G′ ∈ G (4). To complete the proof of both
the base cases and the inductive step, it suffices to show that if n ≥ 5, G′ ∈
G (n− 2), and equality holds, then G ∈ G (n).

If µ(x, z) = µ(y, z) = 3 for all z ∈ V (G′), then G is clearly in G (n)
(M(G) has one more component than M(G′) and that is a single edge).
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Suppose for some z ∈ V (G′), µ(x, z) = 2 and µ(y, z) = 4. Let A,B be the
bipartition of the component of M(G′) containing z with z ∈ A. For each
v ∈ B, µ(z, v) = 4, so, since µ(y, z) = 4, it follows that µ(y, v) = 2 and
µ(x, v) = 4. Then it follows that for each u ∈ A, µ(y, u) = 4 and µ(x, u) = 2.
Hence, G ∈ G (n) (M(G) has the same components as M(G′) except one has
two more vertices and bipartition A ∪ {x} , B ∪ {y}). �

If n = 3, then equality obviously holds in (1) for any nonnegative edge
multiplicities a, b, c whose sum is 10. It is not hard to show that if n = 4,
with vertices w, x, y, z, then equality holds if and only if u(wx) = u(yz) = a,
u(wy) = u(xz) = b, and u(wz = u(wy) = c), for any nonnegative integers
a, b, c whose sum is 10. However, if n equals 3 or 4, and no edge multiplicity
is greater than 4, then it is not hard to see that equality can hold in (1) only
if G is in G (n).

Comments About Proposition 2

The lemma used in proofs in [3], [8] and [13] has 3
(
n
2

)
+n−2 in the inequality.

The sharp inequality with 3
(
n
2

)
+
⌊
n
2

⌋
is actually a special case of a much

more general result of Füredi and Kundgen [7], but they did not characterize
equality. In a paper on a weighted generalization of Turán’s theorem, Bondy
and Tuza [2, Theorem 5.1] actually did characterize equality for an inequality
which is a generalization of inequality (1).

2.2 Other Preliminary Results

Since F (3, 3) has precisely one edge from each of the ten pairs of a 3-subset
of [6] and its complement, the 3-graph S(6) = [6](3) \ {123, 456} has 18 edges
and is F (3, 3)-free. The following lemma, another key ingredient in showing
uniqueness of the optimal configuration, says that any F (3, 3)-free 3-graph
on six points which is not a subgraph of S(6) has at most 16 edges.

Lemma 3. If H ⊆ [6](3) is F (3, 3)-free and has as an edge at least one of
each pair of a set in [6](3) and its complement, then H has at most 16 edges.

Proof. There are six isomorphically distinct 3-graphs on [6] with three edges,
no two of which are disjoint: {124, 125, 126}, {124, 134, 234}, {124, 134, 235},
{124, 135, 236}, {124, 125, 135}, {124, 125, 136}. Each is disjoint from the
copy of F (3, 3) where 123 is the special edge (the other nine edges intersect
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123 in one point), so any H ⊆ [6](3) with at least 17 edges and at least one of
each complementary pair of sets in [6](3) contains an F (3, 3) subgraph. �

If v is a vertex of the 3-graph H, the linkgraph H[v] of v in H is the
(ordinary) graph H[v] = {xy | vxy ∈ H}. The following lemma is similar in
spirit to lemmas which appeared in [3], [9] and [13].

Lemma 4. If H is an F (3, 3)-free 3-graph and {abc, abd, acd, bcd} ⊆ H then
the multiset union H(a, b, c, d) = H[a] ∪ H[b] ∪ H[c] ∪ H[d] is a multigraph
such that each 3 points span at most 10 edges.

Proof. Suppose x, y and z are vertices which span at least 11 edges ofH(a, b, c, d).
That means {x, y, z} spans three edges of three of H[a], H[b], H[c] and H[d],
say the first three. That produces a copy of F (3, 3) on {a, b, c, x, y, z} (abc is
the special edge). �

3 Proof Of Theorem 1

Proof. If n > 5 then adding an edge to S(n) creates a copy of F (3, 3), so
it suffices to show that if H is an F (3, 3)-free 3-graph on n 6= 5 points with
s(n) edges, then H is isomorphic to S(n). This will be shown by induction
on n. The statement certainly holds for n ≤ 4. We note that S(n) is not

optimal when n = 5, since S(5) has 9 edges, while K
(3)
5 has 10, but is uniquely

optimal when n = 6. (Lemma 3 says that if H ⊆ [6](3) has at least 17 edges
and is F (3, 3)-free then H is a subgraph of S(6))

It is easy to check that a K
(3)
4 -free 3-graph on 5 points has at most 7

edges, so a K
(3)
4 -free graph on n ≥ 5 points has at most 7

10

(
n
3

)
edges. Since

s(n) > 3
4

(
n
3

)
, if H is a 3-graph on n ≥ 5 points with s(n) edges, then it has

a K
(3)
4 subgraph.
Assume H is an F (3, 3)-free 3-graph on n ≥ 7 points with s(n) edges.

Let S = {a, b, c, d} be a subset of V (H) which induces a copy of K
(3)
4 . For

i ∈ {0, 1, 2, 3}, let fH
i (S) = fi(S) denote the number of edges of H which

have precisely i vertices in S.
We are going to apply the inductive hypothesis on H \ S, so to be able

to assume H \ S has at most s(n − 4) edges when n = 9, we need to show

that H has less than s(9) edges if H \ S is K
(3)
5 . If H \ S = K

(3)
5 then, by
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Lemma 3, for each v ∈ S, H \ (S \ {v}) has at most 16 edges. That means
f1(S) ≤ 4(16− 10) = 24 and

e(H) = f0(S) + f1(S) + f2(S) + f3(S)

≤ 10 + 24 + 30 + 4

= 68 < 70 = s(9).

Hence, by our inductive assumption, f0(S) ≤ s(n− 4) for all n ≥ 7.
If T is a subset of size 4 of V (S(n)) which spans 4 edges, then f0(T ) =

s(n − 4), f1(T ) = 3
(
n−4
2

)
+
⌊
n−4
2

⌋
, f2(T ) = 5(n − 4) and f3(T ) = 4. We

have f0(S) ≤ s(n− 4) = f0(T ) and, by Lemma 4 and Proposition 2, f1(S) ≤
3
(
n−4
2

)
+
⌊
n−4
2

⌋
= f1(T ). Since e(H) = s(n) and f3(S) = f3(T ) = 4, letting

m = n− 4 we must have

fH
2 (S) ≥ f2(T ) = 5m. (4)

We want to show that every vertex in H \ S is in precisely 5 edges which
have two vertices in S. Let a, b, c, d, e be the number of vertices in H \ S
which are in, respectively, precisely 6, precisely 5, precisely 4, precisely 3 and
at most 2 edges with the other two vertices in S. Then

m = a+ b+ c+ d+ e, (5)

5m ≤ f2(S) ≤ 6a+ 5b+ 4c+ 3d+ 2e

= 6m− (b+ 2c+ 3d+ 4e) (6)

and hence
a ≥ c+ 2d+ 3e. (7)

Let A be the set of vertices in H \ S which are in 6 edges with the other
two vertices in S. By way of contradiction, suppose |A| = a > 0. For each

x ∈ A, the subgraph of H spanned by S∪{x} is K
(3)
5 . By Lemma 3, for each

y 6∈ (S ∪ {x}), S ∪ {x, y} spans at most 16 edges of H, at most 6 containing
y. So if y is in j edges with the other two vertices in S, then y can be in
at most 6 − j edges of the form yuv where u ∈ A and v ∈ S. That means
there are no edges with one vertex in S and the other two in A, and at most
(ab + 2ac + 3ad + 4ae) edges with one vertex in S, one in A, and one in
V (H) \ (S ∪ A). Hence

f1(S) ≤ ab+ 2ac+ 3ad+ 4ae+ 3

(
m− a

2

)
+

⌊
m− a

2

⌋
(8)
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where we have used Proposition 2 to get an upper bound for the number of
edges with one vertex in S and two in V (H) \ S ∪ A. From (6), (7) and (8)
we get

f1(S) + f2(S) ≤ 3

(
m− a

2

)
+

⌊
m− a

2

⌋
+ 6m

− (b+ 2c+ 3d+ 4e) + a(b+ 2c+ 3d+ 4e)

= 3

(
m− a

2

)
+

⌊
m− a

2

⌋
+ 6m

+ (a− 1)
[

(b+ c+ d+ e)︸ ︷︷ ︸
=m−a by (5)

+ (c+ 2d+ 3e)︸ ︷︷ ︸
≤a by (7)

]

≤ 3

(
m− a

2

)
+
m− a

2
+ 6m+ (a− 1)m

=
m− a

2

(
3m− 3a− 2

)
+ 5m+ am

=
m(3m+ 8)

2
− a

2

(
4m− 3a− 2

)
≤
⌊
m(3m+ 8)

2

⌋
+

1

2
− a

2

[
(m− 2) + 3(m− a)

]
<

⌊
m(3m+ 8)

2

⌋
The last inequality holds because m ≥ 3 and a > 0. Hence,

f1(S) + f2(S) <

⌊
m(3m+ 8)

2

⌋
= 3

(
m

2

)
+
⌊m

2

⌋
+ 5m

= f1(T ) + f2(T ),

a contradiction, since f0(S) = f0(T ) and f3(S) = f3(T ) implies that f1(S) +
2f2(S) = f1(T ) + f2(T ). Thus a = 0 and, by inequality (7), c = d = e = 0.
Hence m = b and f1(S) = 3

(
m
2

)
+
⌊
m
2

⌋
, f2(S) = 5m, and each vertex in

V (H) \ S is in precisely 5 edges of H which have two vertices in S.
Since f1(S) = 3

(
n−4
2

)
+
⌊
n−4
2

⌋
, the multigraph H(a, b, c, d) must be in

G (n − 4) (this follows by Lemma 4 and by Proposition 2 if n − 4 ≥ 5, but
it is also true if n − 4 is equal to 3 or 4, by the remarks after the proof
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of Proposition 2, since no edge multiplicity of H(a, b, c, d) can be greater
than 4). We want to show H(a, b, c, d) is isomorphic to G∗n−4, that is that
M(H(a, b, c, d)) has only one component (so it is complete equibipartite).

Let x and y be vertices of H \ S such that µ(x, y) = 4 and, by way of
contradiction, suppose M(H(a, b, c, d)) has more than one component. Then
there exists z ∈ V (H)\S such that µ(x, z) = µ(y, z) = 3. The subgraph of H
induced by S∪{x, z} has 17 edges, so, by Lemma 3, two of the three missing

edges of (S ∪ {x, z})(3) must be complementary, and the only possibility is
that one contains x and two vertices of S, while the other contains z and the
other two vertices of S, say xab and zcd. Similarly S∪{y, z} has 17 edges, and
its two missing complementary edges must each contain precisely two vertices
of S. Since one is zcd, the other must be yab. This is a contradiction, because
S ∪ {x, y} induces 18 edges in H, and if xab and yab are the two missing
edges, then S ∪ {x, y} induces a copy of F (3, 3). Hence, M(H(a, b, c, d)) has
only one component.

Let A,B be the vertex partition for M(H(a, b, c, d)), which is a complete
bipartite graph. Suppose x, z ∈ A and y ∈ B and that xab and ycd are the
missing edges in the subgraph of H induced by S∪{x, y}. Hence zab and ycd
must be the missing edges in the subgraph of H induced by S ∪ {z, y}. The
multiplicity of xz in H(a, b, c, d) is two, so there are four missing edges in
the subgraph of H induced by S ∪{x, z}: xab, zab and two edges containing
x and z and one vertex in S. There are three non-isomorphic ways for this
to occur: xzc, xzd or xza, xzc or xza, xzb. For the first, the four missing
edges would be {xab, zab, xzc, xzd} in which case there would be a copy of
F (3, 3) with special edge xzb. The same thing would occur for the second
possibility. So the four missing edges must be {xza, xzb, xab, zab} and this
must be true for each x, z ∈ A. Similarly, for each u, v ∈ B, the four missing
edges in the subgraph of H induced by S∪{u, v} are {uvc, uvd, ucd, vcd}. By
the inductive hypothesis, we know that H \ S is isomorphic to S(n− 4). To
complete the proof, we need to show this S(n− 4)-subgraph “fits together”
with the edges of H which intersect S to form S(n), that is we need to show
each edge of H disjoint from S intersects both A and B (since we already
know each edge of H which hits S intersects both A∪{a, b} and B ∪{c, d}).
If x, y, z ∈ A, then xac, xad, xcd, yac, yad, ycd, zac, zad, zcd are all edges of
H, so if xyz is also an edge we have an F (3, 3)-subgraph, with an identical
argument if x, y, z ∈ B. �
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4 Final Comments and Further Problems

F (3, 3) is critically 3-colorable, meaning it is not 2-colorable but deleting
any edge results in a 2-colorable 3-graph. Let H be any critically 3-colorable
3-graph. Since S(n) is 2-colorable it is certainly H-free, so π(H) ≥ 3

4
. It

may well be true that π(H) must be equal to 3
4
. Sidorenko [15] showed that

the stronger statement that ex(n;H) = s(n) for sufficiently large n is not

necessarily true; his example is H = K
(3)
5 and n odd.

Let H be the family of all 3-graphs H on [6] which have 10 edges, pre-
cisely one edge from each complementary pair of sets in [6](3). Of course
F (3, 3) is in H. It would be interesting to determine π(H) for other 3-graphs
H ∈ H. One is H(6) = {123, 126, 135, 234, 145, 146, 245, 256, 346, 356}. An
equiblowup of H(6), with the construction repeated in each of the parts, is
the conjectured 3-graph with the maximum number of edges and no copy
of {123, 124, 134} (see [5]). Like F (3, 3), it is self-complementary in [6] and
critically 3-colorable.

The 3-graph {123, 124, 125, 126, 134, 135, 136, 234, 235, 236} is another self-
complementary member of H, but it is 2-colorable (the partition {1, 2},
{3, 4, 5, 6}). Another interesting member of H is the star S6 = {123, 124, 134,
125, 135, 145, 126, 136, 146, 156}. As pointed out in [10], if P is the set of all
triples of noncollinear points in a projective plane of order 3, then the link-
graph of each vertex is K5-free, so taking an equiblowup of P , with the
construction repeated within each part, then an equiblowup again, and so
on, yields a sequence of S6-free 3-graphs with limiting density 9

14
. Hence

π(S6) ≥ 9
14

, and it is conjectured that equality holds.
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