The exact Turán number of $F(3,3)$ and all extremal configurations

by John Goldwasser* and Ryan Hansen*

July 10, 2012
Mathematics Subject Classification: 05D05

Abstract

If H is a 3 -graph, then $\operatorname{ex}(n ; H)$ denotes the maximum number of edges in a 3 -graph on n vertices containing no sub-3-graph isomorphic to H. Let $S(n)$ denote the 3 -graph on n vertices obtained by partitioning the vertex set into parts of sizes $\left\lceil\frac{n}{2}\right\rceil$ and $\left\lfloor\frac{n}{2}\right\rfloor$ and taking as edges all triples that intersect both parts. Let $s(n)$ denote the number of edges in $S(n)$. Let $F(3,3)$ denote the 3 -graph $\{123,145,146,156,245,246,256,345,346,356\}$. We prove that if $n \neq 5$ then $\operatorname{ex}(n ; F(3,3))=s(n)$ and that the unique optimal 3 -graph is $S(n)$.

Key words: Turan number, hypergraph, $\mathrm{F}(3,3)$

1 Introduction

In this paper, we generally use the standard notation. An r-graph is a collection of subsets of size r of a finite set V, called vertices. We sometimes identify a 3 -graph with its edge set. We use $[n]$ to denote the set $\{1,2, \ldots, n\}, X^{(r)}$ to denote the set of all r-subsets of a set X and $e(H)$ to denote the number of edges in an r-graph H.

[^0]Given an r-graph H, the Turán number of $H, \operatorname{ex}(n ; H)$, is the maximum number of edges in an r-graph on n vertices that does not contain a copy of H (we say such a graph is H-free). A simple averaging argument shows that $\operatorname{ex}(n ; H) /\binom{n}{r}$ is a non-increasing function of n, so its limit as n goes to infinity exists, is denoted $\pi(H)$, and is called the Turán density of H. It is well known (see, for example, [4]) that if H is an ordinary graph ($r=2$) then $\pi(H)$ depends only on the chromatic number of H. Turán's theorem [4] gives the exact value of $\operatorname{ex}\left(n ; K_{m}\right)$ and the unique K_{m}-free graph with the maximum number of edges.

Much less is known when $r>2$. For both $K_{4}^{(3)}=\{123,124,134,234\}$ and $K_{4}^{-}=\{123,124,134\}$ there are simple constructions which provide a lower bound ([1] and [5]) and using Razborov's flag algebra approach there has been recent progress in lowering the best upper bound. However, the precise values of $\pi\left(K_{4}^{(3)}\right)$ and $\pi\left(K_{4}^{-}\right)$have yet to be determined.

In fact, it is only within the last dozen years or so that an exact non-zero value of $\pi(H)$ has been determined for any r-graph H with $r>2$. The breakthrough was with the Fano plane $F=\{124,235,346,457,561,672,713\}$. De Caen and Füredi [3] developed a method using linkgraphs (explained in section 2) which reduced much of the problem to a question about edge densities of ordinary multigraphs. They showed that $\pi(F)=\frac{3}{4}$ and the method, with modifications, was later used independently in [8] and [13] to determine, for sufficiently large n, the exact value of $\operatorname{ex}(n ; F)$ and to show the optimal 3 -graph is unique.

The Turán problem has been completely solved for $F_{5}=\{123,124,345\}$, a 3-graph which first received attention in a theorem of Bollobás proving a conjecture of Katona, because forbidding F_{5} and K_{4}^{-}is equivalent to requiring that there do not exist three edges such that one contains the symmetric difference of the other two. Frankl and Füredi [6] later showed that $\pi\left(F_{5}\right)=\frac{2}{9}$ and that, for sufficiently large n, the complete equitripartite graph is the unique F_{5}-free 3 -graph with $\operatorname{ex}\left(n ; F_{5}\right)$ edges. Keevash and Mubayi [11] used the de Caen-Füredi method to show the same for all n greater than 32, while Goldwasser [9] sharpened the method and found, for all n, all F_{5}-free graphs with $\operatorname{ex}\left(n ; F_{5}\right)$ edges (there is a unique one for all $n \geq 5$, except there are two for $n=10$).

If p and q are positive integers Mubayi and Rödl [14] defined $F(p, q)$ to be the 3-graph on $p+q$ vertices whose edges are all the 3-sets which intersect a fixed p-set of vertices in 1 or 3 points. They showed $\pi(H)=\frac{3}{4}$ for several 3-graphs in H in $F(p, q)$, or related to a 3-graph in $F(p, q)$, for certain small
values of p and q. Among these is $F(3,3)$, the 3 -graph on [6] with 10 edges, the "special" edge 123 , and the nine 3 -subsets of [6] which intersect 123 in precisely one point.

In this paper we determine the exact value of $\operatorname{ex}(n ; F(3,3))$ and show that, for each n, there is a unique $F(3,3)$-free 3 -graph with $\operatorname{ex}(n ; F(3,3))$ edges. That makes $F(3,3)$ the second non-trivial 3-graph H (F_{5} is the other) such that all H-free 3 -graphs with ex $(n ; H)$ edges have been determined for all n (the unique maximum Fano plane-free graph has been determined for sufficiently large n). After a draft of this paper was written we discovered that Keevash and Mubayi, in [12], recently determined ex $(n ; F(3,3))$ for all n, though they did not show the uniqueness of the optimal 3 -graph.

One of the main ingredients in our proof is Proposition 2, a sharpened version of a lemma used in [3], [8], and [13]. The sharpened version is needed to prove uniqueness of the optimal configuration.

For $n \geq 3$, let $S(n)$ denote the 3 -graph obtained by partitioning $[n]$ into parts of sizes $\left\lfloor\frac{n}{2}\right\rfloor$ and $\left\lceil\frac{n}{2}\right\rceil$ and taking as edges all triples that intersect both parts. Let $s(n)$ denote the number of edges in $S(n)$. It is easy to calculate that

$$
s(n)=\left\lfloor\frac{3}{4} \cdot \frac{n}{n-1}\binom{n}{3}\right\rfloor=\left\lfloor\frac{n^{2}(n-2)}{8}\right\rfloor .
$$

The following is the main result of this paper.
Theorem 1. Let H be an $F(3,3)$-free 3-graph on $n \neq 5$ points. Then $e(H) \leq$ $s(n)$ with equality holding if and only if H is isomorphic to $S(n)$.
$F(3,3)$ is not 2-colorable, meaning that in any 2-coloring of its vertices there must be a monochromatic edge (further discussion in Section 4). That there is no $3-3$ partition of [6] such that each edge intersects both parts follows because $F(3,3)$ has as an edge precisely one of each of the ten pairs consisting of a 3 -subset of [6] and its complement. Since $S(n)$ is 2-colorable, clearly it is $F(3,3)$-free.

2 Definitions and Preliminaries

We define a family $\mathscr{G}(n)$ of multigraphs $(r=2)$ on n vertices as follows. A multigraph G with n vertices is in $\mathscr{G}(n)$ if and only if the following are satisfied:

1. For each $x, y \in V(G)$, the multiplicity $\mu_{G}(x, y)=\mu(x, y)$ of $x y$ is 2,3 or 4.
2. If $M(G)$ is the (ordinary) graph with $V(M(G))=V(G)$ and $E(M(G))=$ $\left\{x y \in E(G) \mid \mu_{G}(x, y)=4\right\}$ then
(a) If n is even, then each component of $M(G)$ is a complete equibipartite graph.
(b) If n is odd, then one component of $M(G)$ is a complete bipartite graph with part sizes differing by 1 (possibly of sizes 0 and 1) and all other components are complete equibipartite.
3. For each x, y in the same partition part of a component of $M(G)$, $\mu_{G}(x, y)=2$.
4. For each x, y in different components of $M(G), \mu_{G}(x, y)=3$.

It is easy to check that each G in $\mathscr{G}(n)$ has $3\binom{n}{2}+\left\lfloor\frac{n}{2}\right\rfloor$ edges and that each set of 3 vertices spans at most 10 edges. A graph in $\mathscr{G}(n)$ could have as few as $\left\lfloor\frac{n}{2}\right\rfloor$ edges of multiplicity 4 (they would form a maximum matching and all other edges would have multiplicity 3) and as many as $\left\lfloor\frac{n^{2}}{4}\right\rfloor$ edges of multiplicity 4 (forming $K_{\left\lfloor\frac{n}{2}\right\rfloor,\left\lceil\frac{n}{2}\right\rceil}$ with all other edges having multiplicity 2). We let G_{n}^{*} denote this latter multigraph (so $M\left(G_{n}^{*}\right)$ is complete equibipartite). If $p(n)$ denotes the number of partitions of n, it is easy to see that the number of isomorphically distinct multigraphs in $\mathscr{G}(n)$ is $p(k)$ if $n=2 k$ and $\sum_{i=0}^{k} p(i)$ if $n=2 k+1$.

2.1 Main Proposition

Proposition 2. Let G be a multigraph on $n \geq 3$ vertices where each set of 3 vertices spans at most 10 edges. Then

$$
\begin{equation*}
e(G) \leq 3\binom{n}{2}+\left\lfloor\frac{n}{2}\right\rfloor . \tag{1}
\end{equation*}
$$

Furthermore if $n \geq 5$ then equality holds if and only if $G \in \mathscr{G}(n)$.
We do the proof in two parts, first the inequality, then the characterization of equality.

Proof Of Inequality In Proposition 2

First we prove inequality (1) by induction on n. It is obviously satisfied if $n=3$. It is also obviously satisfied if no edge has multiplicity greater than 3. So we assume $n>3$ and $\mu(x, y)=t \geq 4$ for some edge $x y$ of G. For each z in $V(G) \backslash\{x, y\}, \mu(x, z)+\mu(y, z) \leq 10-t$, so if p is the total number of edges incident to x or y (or both) then

$$
\begin{align*}
p & \leq(10-t)(n-2)+t \tag{2}\\
& =10(n-2)-t(n-3) \\
& \leq 10(n-2)-4(n-3) \tag{3}\\
& =6 n-8 .
\end{align*}
$$

Hence, by the inductive hypothesis,

$$
\begin{aligned}
e(G) & \leq 3\binom{n-2}{2}+\left\lfloor\frac{n-2}{2}\right\rfloor+6 n-8 \\
& =3\binom{n}{2}+\left\lfloor\frac{n}{2}\right\rfloor .
\end{aligned}
$$

Characterization Of Equality In Proposition 2

We prove the statement about equality holding in inequality (1) for $n \geq 5$ by induction on n. We can do the base cases, $n=5$ and $n=6$, and the inductive step simultaneously.

Assume $n \geq 5$ and equality holds in (1). Then equality must hold in (3), so no multiplicity can be more than 4 . Let x and y be vertices such that $\mu(x, y)=4$. Since equality holds in (1) and (2), for each $z \in V(G) \backslash\{x, y\}$, both $\mu(x, z)$ and $\mu(y, z)$ are equal to 3 or one is equal to 4 and the other is equal to 2. Moreover, the multigraph $G^{\prime}=G \backslash\{x, y\}$ has precisely $3\binom{n-2}{2}+$ $\left\lfloor\frac{n-2}{2}\right\rfloor$ edges.

If $n=5$, then G^{\prime} has 10 edges, the multiplicities must be $4,4,2$ or $4,3,3$ and in either case $G^{\prime} \in \mathscr{G}(3)$. If $n=6$, then G^{\prime} has 20 edges, the multiplicities must be $4,4,4,4,2,2$ or $4,4,3,3,3,3$ (each pair of disjoint edges have the same multiplicities) and, in either case, $G^{\prime} \in \mathscr{G}(4)$. To complete the proof of both the base cases and the inductive step, it suffices to show that if $n \geq 5, G^{\prime} \in$ $\mathscr{G}(n-2)$, and equality holds, then $G \in \mathscr{G}(n)$.

If $\mu(x, z)=\mu(y, z)=3$ for all $z \in V\left(G^{\prime}\right)$, then G is clearly in $\mathscr{G}(n)$ ($M(G)$ has one more component than $M\left(G^{\prime}\right)$ and that is a single edge).

Suppose for some $z \in V\left(G^{\prime}\right), \mu(x, z)=2$ and $\mu(y, z)=4$. Let A, B be the bipartition of the component of $M\left(G^{\prime}\right)$ containing z with $z \in A$. For each $v \in B, \mu(z, v)=4$, so, since $\mu(y, z)=4$, it follows that $\mu(y, v)=2$ and $\mu(x, v)=4$. Then it follows that for each $u \in A, \mu(y, u)=4$ and $\mu(x, u)=2$. Hence, $G \in \mathscr{G}(n)\left(M(G)\right.$ has the same components as $M\left(G^{\prime}\right)$ except one has two more vertices and bipartition $A \cup\{x\}, B \cup\{y\})$.

If $n=3$, then equality obviously holds in (1) for any nonnegative edge multiplicities a, b, c whose sum is 10 . It is not hard to show that if $n=4$, with vertices w, x, y, z, then equality holds if and only if $u(w x)=u(y z)=a$, $u(w y)=u(x z)=b$, and $u(w z=u(w y)=c)$, for any nonnegative integers a, b, c whose sum is 10 . However, if n equals 3 or 4 , and no edge multiplicity is greater than 4 , then it is not hard to see that equality can hold in (1) only if G is in $\mathscr{G}(n)$.

Comments About Proposition 2

The lemma used in proofs in [3], [8] and [13] has $3\binom{n}{2}+n-2$ in the inequality. The sharp inequality with $3\binom{n}{2}+\left\lfloor\frac{n}{2}\right\rfloor$ is actually a special case of a much more general result of Füredi and Kundgen [7], but they did not characterize equality. In a paper on a weighted generalization of Turán's theorem, Bondy and Tuza [2, Theorem 5.1] actually did characterize equality for an inequality which is a generalization of inequality (1).

2.2 Other Preliminary Results

Since $F(3,3)$ has precisely one edge from each of the ten pairs of a 3 -subset of $[6]$ and its complement, the 3-graph $S(6)=[6]^{(3)} \backslash\{123,456\}$ has 18 edges and is $F(3,3)$-free. The following lemma, another key ingredient in showing uniqueness of the optimal configuration, says that any $F(3,3)$-free 3 -graph on six points which is not a subgraph of $S(6)$ has at most 16 edges.

Lemma 3. If $H \subseteq[6]^{(3)}$ is $F(3,3)$-free and has as an edge at least one of each pair of a set in $[6]^{(3)}$ and its complement, then H has at most 16 edges.

Proof. There are six isomorphically distinct 3-graphs on [6] with three edges, no two of which are disjoint: $\{124,125,126\},\{124,134,234\},\{124,134,235\}$, $\{124,135,236\},\{124,125,135\},\{124,125,136\}$. Each is disjoint from the copy of $F(3,3)$ where 123 is the special edge (the other nine edges intersect

123 in one point), so any $H \subseteq[6]^{(3)}$ with at least 17 edges and at least one of each complementary pair of sets in $[6]^{(3)}$ contains an $F(3,3)$ subgraph.

If v is a vertex of the 3 -graph H, the linkgraph $H[v]$ of v in H is the (ordinary) graph $H[v]=\{x y \mid v x y \in H\}$. The following lemma is similar in spirit to lemmas which appeared in [3], [9] and [13].

Lemma 4. If H is an $F(3,3)$-free 3-graph and $\{a b c, a b d, a c d, b c d\} \subseteq H$ then the multiset union $H(a, b, c, d)=H[a] \cup H[b] \cup H[c] \cup H[d]$ is a multigraph such that each 3 points span at most 10 edges.

Proof. Suppose x, y and z are vertices which span at least 11 edges of $H(a, b, c, d)$. That means $\{x, y, z\}$ spans three edges of three of $H[a], H[b], H[c]$ and $H[d]$, say the first three. That produces a copy of $F(3,3)$ on $\{a, b, c, x, y, z\}$ ($a b c$ is the special edge).

3 Proof Of Theorem 1

Proof. If $n>5$ then adding an edge to $S(n)$ creates a copy of $F(3,3)$, so it suffices to show that if H is an $F(3,3)$-free 3 -graph on $n \neq 5$ points with $s(n)$ edges, then H is isomorphic to $S(n)$. This will be shown by induction on n. The statement certainly holds for $n \leq 4$. We note that $S(n)$ is not optimal when $n=5$, since $S(5)$ has 9 edges, while $K_{5}^{(3)}$ has 10 , but is uniquely optimal when $n=6$. (Lemma 3 says that if $H \subseteq[6]^{(3)}$ has at least 17 edges and is $F(3,3)$-free then H is a subgraph of $S(6)$)

It is easy to check that a $K_{4}^{(3)}$-free 3 -graph on 5 points has at most 7 edges, so a $K_{4}^{(3)}$-free graph on $n \geq 5$ points has at most $\frac{7}{10}\binom{n}{3}$ edges. Since $s(n)>\frac{3}{4}\binom{n}{3}$, if H is a 3 -graph on $n \geq 5$ points with $s(n)$ edges, then it has a $K_{4}^{(3)}$ subgraph.

Assume H is an $F(3,3)$-free 3 -graph on $n \geq 7$ points with $s(n)$ edges. Let $S=\{a, b, c, d\}$ be a subset of $V(H)$ which induces a copy of $K_{4}^{(3)}$. For $i \in\{0,1,2,3\}$, let $f_{i}^{H}(S)=f_{i}(S)$ denote the number of edges of H which have precisely i vertices in S.

We are going to apply the inductive hypothesis on $H \backslash S$, so to be able to assume $H \backslash S$ has at most $s(n-4)$ edges when $n=9$, we need to show that H has less than $s(9)$ edges if $H \backslash S$ is $K_{5}^{(3)}$. If $H \backslash S=K_{5}^{(3)}$ then, by

Lemma 3, for each $v \in S, H \backslash(S \backslash\{v\})$ has at most 16 edges. That means $f_{1}(S) \leq 4(16-10)=24$ and

$$
\begin{aligned}
e(H) & =f_{0}(S)+f_{1}(S)+f_{2}(S)+f_{3}(S) \\
& \leq 10+24+30+4 \\
& =68<70=s(9) .
\end{aligned}
$$

Hence, by our inductive assumption, $f_{0}(S) \leq s(n-4)$ for all $n \geq 7$.
If T is a subset of size 4 of $V(S(n))$ which spans 4 edges, then $f_{0}(T)=$ $s(n-4), f_{1}(T)=3\binom{n-4}{2}+\left\lfloor\frac{n-4}{2}\right\rfloor, f_{2}(T)=5(n-4)$ and $f_{3}(T)=4$. We have $f_{0}(S) \leq s(n-4)=f_{0}(T)$ and, by Lemma 4 and Proposition $2, f_{1}(S) \leq$ $3\binom{n-4}{2}+\left\lfloor\frac{n-4}{2}\right\rfloor=f_{1}(T)$. Since $e(H)=s(n)$ and $f_{3}(S)=f_{3}(T)=4$, letting $m=n-4$ we must have

$$
\begin{equation*}
f_{2}^{H}(S) \geq f_{2}(T)=5 m \tag{4}
\end{equation*}
$$

We want to show that every vertex in $H \backslash S$ is in precisely 5 edges which have two vertices in S. Let a, b, c, d, e be the number of vertices in $H \backslash S$ which are in, respectively, precisely 6 , precisely 5 , precisely 4 , precisely 3 and at most 2 edges with the other two vertices in S. Then

$$
\begin{align*}
m & =a+b+c+d+e \tag{5}\\
5 m & \leq f_{2}(S) \leq 6 a+5 b+4 c+3 d+2 e \\
& =6 m-(b+2 c+3 d+4 e) \tag{6}
\end{align*}
$$

and hence

$$
\begin{equation*}
a \geq c+2 d+3 e \tag{7}
\end{equation*}
$$

Let A be the set of vertices in $H \backslash S$ which are in 6 edges with the other two vertices in S. By way of contradiction, suppose $|A|=a>0$. For each $x \in A$, the subgraph of H spanned by $S \cup\{x\}$ is $K_{5}^{(3)}$. By Lemma 3, for each $y \notin(S \cup\{x\}), S \cup\{x, y\}$ spans at most 16 edges of H, at most 6 containing y. So if y is in j edges with the other two vertices in S, then y can be in at most $6-j$ edges of the form $y u v$ where $u \in A$ and $v \in S$. That means there are no edges with one vertex in S and the other two in A, and at most $(a b+2 a c+3 a d+4 a e)$ edges with one vertex in S, one in A, and one in $V(H) \backslash(S \cup A)$. Hence

$$
\begin{equation*}
f_{1}(S) \leq a b+2 a c+3 a d+4 a e+3\binom{m-a}{2}+\left\lfloor\frac{m-a}{2}\right\rfloor \tag{8}
\end{equation*}
$$

where we have used Proposition 2 to get an upper bound for the number of edges with one vertex in S and two in $V(H) \backslash S \cup A$. From (6), (7) and (8) we get

$$
\begin{aligned}
& f_{1}(S)+f_{2}(S) \leq 3\binom{m-a}{2}+\left\lfloor\frac{m-a}{2}\right\rfloor+6 m \\
&-(b+2 c+3 d+4 e)+a(b+2 c+3 d+4 e) \\
&=3\binom{m-a}{2}+\left\lfloor\frac{m-a}{2}\right\rfloor+6 m \\
& \quad+(a-1)[\underbrace{(b+c+d+e)}_{=m-a \text { by }(5)}+\underbrace{(c+2 d+3 e)}_{\leq a \text { by }(7)}] \\
& \leq 3\binom{m-a}{2}+\frac{m-a}{2}+6 m+(a-1) m \\
&=\frac{m-a}{2}(3 m-3 a-2)+5 m+a m \\
&=\frac{m(3 m+8)}{2}-\frac{a}{2}(4 m-3 a-2) \\
& \leq\left\lfloor\frac{m(3 m+8)}{2}\right\rfloor+\frac{1}{2}-\frac{a}{2}[(m-2)+3(m-a)] \\
&<\left\lfloor\frac{m(3 m+8)}{2}\right\rfloor
\end{aligned}
$$

The last inequality holds because $m \geq 3$ and $a>0$. Hence,

$$
\begin{aligned}
f_{1}(S)+f_{2}(S) & <\left\lfloor\frac{m(3 m+8)}{2}\right\rfloor \\
& =3\binom{m}{2}+\left\lfloor\frac{m}{2}\right\rfloor+5 m \\
& =f_{1}(T)+f_{2}(T)
\end{aligned}
$$

a contradiction, since $f_{0}(S)=f_{0}(T)$ and $f_{3}(S)=f_{3}(T)$ implies that $f_{1}(S)+$ $2 f_{2}(S)=f_{1}(T)+f_{2}(T)$. Thus $a=0$ and, by inequality (7), $c=d=e=0$. Hence $m=b$ and $f_{1}(S)=3\binom{m}{2}+\left\lfloor\frac{m}{2}\right\rfloor, f_{2}(S)=5 m$, and each vertex in $V(H) \backslash S$ is in precisely 5 edges of H which have two vertices in S.

Since $f_{1}(S)=3\binom{n-4}{2}+\left\lfloor\frac{n-4}{2}\right\rfloor$, the multigraph $H(a, b, c, d)$ must be in $\mathscr{G}(n-4)$ (this follows by Lemma 4 and by Proposition 2 if $n-4 \geq 5$, but it is also true if $n-4$ is equal to 3 or 4 , by the remarks after the proof
of Proposition 2, since no edge multiplicity of $H(a, b, c, d)$ can be greater than 4$)$. We want to show $H(a, b, c, d)$ is isomorphic to G_{n-4}^{*}, that is that $M(H(a, b, c, d))$ has only one component (so it is complete equibipartite).

Let x and y be vertices of $H \backslash S$ such that $\mu(x, y)=4$ and, by way of contradiction, suppose $M(H(a, b, c, d))$ has more than one component. Then there exists $z \in V(H) \backslash S$ such that $\mu(x, z)=\mu(y, z)=3$. The subgraph of H induced by $S \cup\{x, z\}$ has 17 edges, so, by Lemma 3, two of the three missing edges of $(S \cup\{x, z\})^{(3)}$ must be complementary, and the only possibility is that one contains x and two vertices of S, while the other contains z and the other two vertices of S, say $x a b$ and $z c d$. Similarly $S \cup\{y, z\}$ has 17 edges, and its two missing complementary edges must each contain precisely two vertices of S. Since one is $z c d$, the other must be $y a b$. This is a contradiction, because $S \cup\{x, y\}$ induces 18 edges in H, and if $x a b$ and $y a b$ are the two missing edges, then $S \cup\{x, y\}$ induces a copy of $F(3,3)$. Hence, $M(H(a, b, c, d))$ has only one component.

Let A, B be the vertex partition for $M(H(a, b, c, d))$, which is a complete bipartite graph. Suppose $x, z \in A$ and $y \in B$ and that $x a b$ and $y c d$ are the missing edges in the subgraph of H induced by $S \cup\{x, y\}$. Hence $z a b$ and $y c d$ must be the missing edges in the subgraph of H induced by $S \cup\{z, y\}$. The multiplicity of $x z$ in $H(a, b, c, d)$ is two, so there are four missing edges in the subgraph of H induced by $S \cup\{x, z\}: x a b, z a b$ and two edges containing x and z and one vertex in S. There are three non-isomorphic ways for this to occur: $x z c, x z d$ or $x z a, x z c$ or $x z a, x z b$. For the first, the four missing edges would be $\{x a b, z a b, x z c, x z d\}$ in which case there would be a copy of $F(3,3)$ with special edge $x z b$. The same thing would occur for the second possibility. So the four missing edges must be $\{x z a, x z b, x a b, z a b\}$ and this must be true for each $x, z \in A$. Similarly, for each $u, v \in B$, the four missing edges in the subgraph of H induced by $S \cup\{u, v\}$ are $\{u v c, u v d, u c d, v c d\}$. By the inductive hypothesis, we know that $H \backslash S$ is isomorphic to $S(n-4)$. To complete the proof, we need to show this $S(n-4)$-subgraph "fits together" with the edges of H which intersect S to form $S(n)$, that is we need to show each edge of H disjoint from S intersects both A and B (since we already know each edge of H which hits S intersects both $A \cup\{a, b\}$ and $B \cup\{c, d\})$. If $x, y, z \in A$, then $x a c, x a d, x c d, y a c, y a d, y c d, z a c, z a d, z c d$ are all edges of H, so if $x y z$ is also an edge we have an $F(3,3)$-subgraph, with an identical argument if $x, y, z \in B$.

4 Final Comments and Further Problems

$F(3,3)$ is critically 3 -colorable, meaning it is not 2-colorable but deleting any edge results in a 2 -colorable 3 -graph. Let H be any critically 3 -colorable 3 -graph. Since $S(n)$ is 2 -colorable it is certainly H-free, so $\pi(H) \geq \frac{3}{4}$. It may well be true that $\pi(H)$ must be equal to $\frac{3}{4}$. Sidorenko [15] showed that the stronger statement that $\operatorname{ex}(n ; H)=s(n)$ for sufficiently large n is not necessarily true; his example is $H=K_{5}^{(3)}$ and n odd.

Let \mathcal{H} be the family of all 3 -graphs H on [6] which have 10 edges, precisely one edge from each complementary pair of sets in $[6]^{(3)}$. Of course $F(3,3)$ is in \mathcal{H}. It would be interesting to determine $\pi(H)$ for other 3-graphs $H \in \mathcal{H}$. One is $H(6)=\{123,126,135,234,145,146,245,256,346,356\}$. An equiblowup of $H(6)$, with the construction repeated in each of the parts, is the conjectured 3 -graph with the maximum number of edges and no copy of $\{123,124,134\}$ (see [5]). Like $F(3,3)$, it is self-complementary in [6] and critically 3 -colorable.

The 3-graph $\{123,124,125,126,134,135,136,234,235,236\}$ is another selfcomplementary member of \mathcal{H}, but it is 2-colorable (the partition $\{1,2\}$, $\{3,4,5,6\})$. Another interesting member of \mathcal{H} is the star $S_{6}=\{123,124,134$, $125,135,145,126,136,146,156\}$. As pointed out in [10], if P is the set of all triples of noncollinear points in a projective plane of order 3, then the linkgraph of each vertex is K_{5}-free, so taking an equiblowup of P, with the construction repeated within each part, then an equiblowup again, and so on, yields a sequence of S_{6}-free 3 -graphs with limiting density $\frac{9}{14}$. Hence $\pi\left(S_{6}\right) \geq \frac{9}{14}$, and it is conjectured that equality holds.

Acknowledgements

We thank both referees for their detailed comments which could only come from an exceptionally careful reading of the manuscript.

References

[1] B. Bollobas. Combinatorics. Cambridge University Press, 1986.
[2] J. A. Bondy and Z. Tuza. A weighted generalization of Turán's theorem. Journal of Graph Theory, pages 267-275, 1997.
[3] D. de Caen and Z. Füredi. The maximum size of 3-uniform hypergraphs not containing a Fano plane. Journal of Combinatorial Theory Series B, pages 274-276, 2000.
[4] R Diestel. Graph Theory, $2^{\text {nd }}$ edition. Springer, 1991.
[5] P. Frankl and Z. Füredi. An exact result for 3-graphs. Discrete Math, 50:323-328, 1984.
[6] P. Frankl and Z. Füredi. A new generalization of the Erdos-Ko-Rado theorem. Combinatorica, 3:341-349, 2003.
[7] Z. Füredi and A. Kundgen. Turán problems for weighted graphs. Journal of Graph Theory, 40:195-225, 2002.
[8] Z. Füredi and M. Simonovits. Triple systems not containing a Fano configuration. Combinatorics, Probability and Computing, 14:467-484, 2005.
[9] J. Goldwasser. On the Turán Number of $\{123,124,345\}$. preprint.
[10] J. Goldwasser. Communication at AIM Workshop on Turan Hypergraphs. Palo Alto, 2011.
[11] P. Keevash and D. Mubayi. Stability results for cancellative hypergraphs. Journal of Combinatorial Theory Series B, 92:163-175, 2004.
[12] P. Keevash and D. Mubayi. The Turán number of $F_{3,3}$. 21:451-456, 2012.
[13] P. Keevash and B. Sudakov. The exact Turán number of triple systems. Combinatorica, 25:561-574, 2005.
[14] D. Mubayi and V. Rödl. On the turán number of triple systems. Journal of Combinatorial Theory Series A, 100:136-152, 2002.
[15] A. Sidorenko. What we know and what we do not know about Turán numbers. Graphs and Combinatorics, 11:179-199, 1995.

[^0]: *Department of Mathematics, West Virginia University, Morgantown, WV 26506, jgoldwas@math.wvu.edu, rhansen@math.wvu.edu

