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Abstract

If H is a 3-graph, then ex(n; H) denotes the maximum number
of edges in a 3-graph on n vertices containing no sub-3-graph iso-
morphic to H. Let S(n) denote the 3-graph on n vertices obtained
by partitioning the vertex set into parts of sizes {%] and L%J and
taking as edges all triples that intersect both parts. Let s(n) de-
note the number of edges in S(n). Let F(3,3) denote the 3-graph
{123,145, 146, 156, 245, 246, 256, 345, 346, 356 }. We prove that if n # 5
then ex(n; F(3,3)) = s(n) and that the unique optimal 3-graph is
S(n).
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1 Introduction

In this paper, we generally use the standard notation. An r-graph is a collec-
tion of subsets of size r of a finite set V', called vertices. We sometimes identify
a 3-graph with its edge set. We use [n] to denote the set {1,2,...,n}, X
to denote the set of all r-subsets of a set X and e(H) to denote the number
of edges in an r-graph H.
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Given an r-graph H, the Turdn number of H, ex(n; H), is the maximum
number of edges in an r-graph on n vertices that does not contain a copy
of H (we say such a graph is H-free). A simple averaging argument shows
that ex(n; H)/(") is a non-increasing function of n, so its limit as n goes to
infinity exists, is denoted 7(H), and is called the Turdn density of H. It is
well known (see, for example, [4]) that if H is an ordinary graph (r = 2)
then 7(H) depends only on the chromatic number of H. Turdn’s theorem [4]
gives the exact value of ex(n; K,,) and the unique K,,-free graph with the
maximum number of edges.

Much less is known when r > 2. For both K\* = {123,124, 134, 234} and
K, = {123,124,134} there are simple constructions which provide a lower
bound ([1] and [5]) and using Razborov’s flag algebra approach there has
been recent progress in lowering the best upper bound. However, the precise
values of 7(K f’)) and m(K ) have yet to be determined.

In fact, it is only within the last dozen years or so that an exact non-zero
value of 7(H) has been determined for any r-graph H with r» > 2. The break-
through was with the Fano plane ' = {124,235, 346,457,561,672,713}. De
Caen and Fiiredi [3] developed a method using linkgraphs (explained in sec-
tion 2) which reduced much of the problem to a question about edge densities
of ordinary multigraphs. They showed that 7(F) = 2 and the method, with
modifications, was later used independently in [8] and [13] to determine,
for sufficiently large n, the exact value of ex(n; F') and to show the optimal
3-graph is unique.

The Turdn problem has been completely solved for Fy = {123,124, 345},
a 3-graph which first received attention in a theorem of Bollobds proving a
conjecture of Katona, because forbidding F; and K, is equivalent to requiring
that there do not exist three edges such that one contains the symmetric
difference of the other two. Frankl and Fiiredi [6] later showed that 7(F5) = 2
and that, for sufficiently large n, the complete equitripartite graph is the
unique Fs-free 3-graph with ex(n; F5) edges. Keevash and Mubayi [11] used
the de Caen-Fiiredi method to show the same for all n greater than 32, while
Goldwasser [9] sharpened the method and found, for all n, all Fs-free graphs
with ex(n; F5) edges (there is a unique one for all n > 5, except there are
two for n = 10).

If p and ¢ are positive integers Mubayi and Rodl [14] defined F(p,q) to
be the 3-graph on p+ ¢ vertices whose edges are all the 3-sets which intersect
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a fixed p-set of vertices in 1 or 3 points. They showed 7 (H) = ¢ for several

3-graphs in H in F(p,q), or related to a 3-graph in F'(p, q), for certain small
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values of p and q. Among these is F'(3,3), the 3-graph on [6] with 10 edges,
the “special” edge 123, and the nine 3-subsets of [6] which intersect 123 in
precisely one point.

In this paper we determine the exact value of ex(n; F(3,3)) and show
that, for each n, there is a unique F'(3,3)-free 3-graph with ex(n; F'(3,3))
edges. That makes F'(3, 3) the second non-trivial 3-graph H (Fj is the other)
such that all H-free 3-graphs with ex(n; H) edges have been determined for
all n (the unique maximum Fano plane-free graph has been determined for
sufficiently large n). After a draft of this paper was written we discovered
that Keevash and Mubayi, in [12], recently determined ex(n; F'(3,3)) for all
n, though they did not show the uniqueness of the optimal 3-graph.

One of the main ingredients in our proof is Proposition 2, a sharpened
version of a lemma used in [3], [8], and [13]. The sharpened version is needed
to prove uniqueness of the optimal configuration.

For n > 3, let S(n) denote the 3-graph obtained by partitioning [n] into

parts of sizes bJ and ’—gw and taking as edges all triples that intersect both

parts. Let s(n) denote the number of edges in S(n). It is easy to calculate
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=3 ()] -[52)

The following is the main result of this paper.

Theorem 1. Let H be an F'(3,3)-free 3-graph onn # 5 points. Then e(H) <
s(n) with equality holding if and only if H is isomorphic to S(n).

F(3,3) is not 2-colorable, meaning that in any 2-coloring of its vertices
there must be a monochromatic edge (further discussion in Section 4). That
there is no 3-3 partition of [6] such that each edge intersects both parts
follows because F'(3,3) has as an edge precisely one of each of the ten pairs
consisting of a 3-subset of [6] and its complement. Since S(n) is 2-colorable,
clearly it is F'(3, 3)-free.

2 Definitions and Preliminaries
We define a family ¢(n) of multigraphs (r = 2) on n vertices as follows.

A multigraph G with n vertices is in ¢ (n) if and only if the following are
satisfied:



1. For each x,y € V(G), the multiplicity ug(z,y) = u(x,y) of zy is 2,3
or 4.

2. If M(G) is the (ordinary) graph with V(M (G)) = V(G) and E(M(G)) =

{zy € E(G) | pg(w,y) = 4} then

(a) If n is even, then each component of M(G) is a complete equibi-
partite graph.

(b) If n is odd, then one component of M(G) is a complete bipartite
graph with part sizes differing by 1 (possibly of sizes 0 and 1) and
all other components are complete equibipartite.

3. For each z,y in the same partition part of a component of M(G),
pe(@,y) = 2.

4. For each z,y in different components of M(G), ug(x,y) = 3.

It is easy to check that each G in ¢ (n) has 3(}) + |%| edges and that

each set of 3 vertices spans at most 10 edges. A graph in ¢(n) could have

as few as L%J edges of multiplicity 4 (they would form a maximum matching

and all other edges would have multiplicity 3) and as many as L”;J edges of

multiplicity 4 (forming K|»| =y with all other edges having multiplicity 2).
We let G denote this latter multigraph (so M (G} is complete equibipartite).
If p(n) denotes the number of partitions of n, it is easy to see that the number
of isomorphically distinct multigraphs in ¢ (n) is p(k) if n = 2k and Zf:o p(7)
if n=2k+ 1.

2.1 Main Proposition

Proposition 2. Let G be a multigraph on n > 3 vertices where each set of
3 vertices spans at most 10 edges. Then

e(G) < 3(2) + LSJ . (1)

Furthermore if n > 5 then equality holds if and only if G € 4 (n).

We do the proof in two parts, first the inequality, then the characterization
of equality.



Proof Of Inequality In Proposition 2

First we prove inequality (1) by induction on n. It is obviously satisfied if
n = 3. It is also obviously satisfied if no edge has multiplicity greater than
3. So we assume n > 3 and p(x,y) =t > 4 for some edge zy of G. For each
zin V(G) \ {z,y}, u(x, z) + u(y, z) < 10 —t, so if p is the total number of
edges incident to z or y (or both) then

p<(10—1t)(n—2)+t (2)
=10(n —2) —t(n —3)
< 10(n —2) —4(n — 3) (3)
= 6n — 8.

Hence, by the inductive hypothesis,
—2 —2
e(@)<3(" I e (N A
2 2
n n
-o(3)+ 131
(5) L5

Characterization Of Equality In Proposition 2

We prove the statement about equality holding in inequality (1) for n > 5
by induction on n. We can do the base cases, n = 5 and n = 6, and the
inductive step simultaneously.

Assume n > 5 and equality holds in (1). Then equality must hold in (3),
so no multiplicity can be more than 4. Let x and y be vertices such that
wu(x,y) = 4. Since equality holds in (1) and (2), for each z € V(G) \ {z,y},
both pu(z, z) and u(y, z) are equal to 3 or one is equal to 4 and the other is
equal to 2. Moreover, the multigraph G’ = G \ {z, y} has precisely 3(”;2) +
L”T”J edges.

If n = 5, then G’ has 10 edges, the multiplicities must be 4,4,2 or 4,3,3 and
in either case G' € ¢(3). If n = 6, then G’ has 20 edges, the multiplicities
must be 4,4,4,4,22 or 4,4,3,3,3,3 (each pair of disjoint edges have the same
multiplicities) and, in either case, G’ € ¢(4). To complete the proof of both
the base cases and the inductive step, it suffices to show that if n > 5, G’ €
4 (n — 2), and equality holds, then G € ¥ (n).

If w(z,z) = p(y,z) = 3 for all z € V(G'), then G is clearly in ¥4(n)
(M(G) has one more component than M(G’) and that is a single edge).
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Suppose for some z € V(G'), u(x,z) = 2 and p(y,z) = 4. Let A, B be the
bipartition of the component of M(G’) containing z with z € A. For each
v € B,u(z,v) = 4, so, since u(y,z) = 4, it follows that u(y,v) = 2 and
p(z,v) = 4. Then it follows that for each u € A, u(y,u) =4 and p(z,u) = 2.
Hence, G € ¥ (n) (M(G) has the same components as M (G’) except one has
two more vertices and bipartition AU {z}, B U {y}). [

If n = 3, then equality obviously holds in (1) for any nonnegative edge
multiplicities a, b, ¢ whose sum is 10. It is not hard to show that if n = 4,
with vertices w, x,y, z, then equality holds if and only if u(wx) = u(yz) = a,
u(wy) = u(rz) = b, and u(wz = u(wy) = ¢), for any nonnegative integers
a, b, c whose sum is 10. However, if n equals 3 or 4, and no edge multiplicity
is greater than 4, then it is not hard to see that equality can hold in (1) only
if G is in ¥(n).

Comments About Proposition 2

The lemma used in proofs in [3], [8] and [13] has 3(}) +n—2 in the inequality.
The sharp inequality with 3(3) + ng is actually a special case of a much
more general result of Fiiredi and Kundgen [7], but they did not characterize
equality. In a paper on a weighted generalization of Turan’s theorem, Bondy
and Tuza [2, Theorem 5.1] actually did characterize equality for an inequality
which is a generalization of inequality (1).

2.2  Other Preliminary Results

Since F'(3,3) has precisely one edge from each of the ten pairs of a 3-subset
of [6] and its complement, the 3-graph S(6) = [6]® \ {123,456} has 18 edges
and is F'(3,3)-free. The following lemma, another key ingredient in showing
uniqueness of the optimal configuration, says that any F(3,3)-free 3-graph
on six points which is not a subgraph of S(6) has at most 16 edges.

Lemma 3. If H C [6]® is F(3,3)-free and has as an edge at least one of
each pair of a set in [6]®) and its complement, then H has at most 16 edges.

Proof. There are six isomorphically distinct 3-graphs on [6] with three edges,
no two of which are disjoint: {124,125,126}, {124, 134,234}, {124,134, 235},
(124,135,236}, {124,125,135}, {124,125,136}. Each is disjoint from the
copy of F(3,3) where 123 is the special edge (the other nine edges intersect



123 in one point), so any H C [6]® with at least 17 edges and at least one of
each complementary pair of sets in [6]®®) contains an F'(3,3) subgraph. M

If v is a vertex of the 3-graph H, the linkgraph H[v] of v in H is the
(ordinary) graph Hv] = {xy | vay € H}. The following lemma is similar in
spirit to lemmas which appeared in [3], [9] and [13].

Lemma 4. If H is an F(3,3)-free 3-graph and {abc, abd, acd, bed} C H then
the multiset union H(a,b,c,d) = Hla| U H[b] U H|c| U H[d] is a multigraph
such that each 3 points span at most 10 edges.

Proof. Suppose x,y and z are vertices which span at least 11 edges of H(a, b, ¢, d).
That means {z,y, z} spans three edges of three of H|a|, H[b], H|c|] and H|d],
say the first three. That produces a copy of F'(3,3) on {a,b,c,z,y, 2} (abc is
the special edge). |

3 Proof Of Theorem 1

Proof. 1f n. > 5 then adding an edge to S(n) creates a copy of F(3,3), so
it suffices to show that if H is an F(3, 3)-free 3-graph on n # 5 points with
s(n) edges, then H is isomorphic to S(n). This will be shown by induction
on n. The statement certainly holds for n < 4. We note that S(n) is not
optimal when n = 5, since S(5) has 9 edges, while Kég) has 10, but is uniquely
optimal when n = 6. (Lemma 3 says that if H C [6]®®) has at least 17 edges
and is F'(3, 3)-free then H is a subgraph of S(6))

It is easy to check that a K ZEg)—free 3-graph on 5 points has at most 7

edges, so a K f’)—free graph on n > 5 points has at most 1—70(2) edges. Since
s(n) > 3(%), if H is a 3-graph on n > 5 points with s(n) edges, then it has
a K AES) subgraph.

Assume H is an F(3,3)-free 3-graph on n > 7 points with s(n) edges.
Let S = {a,b,c,d} be a subset of V(H) which induces a copy of Kf). For
i € {0,1,2,3}, let fH(S) = f;(S) denote the number of edges of H which
have precisely ¢ vertices in S.

We are going to apply the inductive hypothesis on H \ S, so to be able

to assume H \ S has at most s(n —4) edges when n = 9, we need to show
that H has less than s(9) edges if H\ S is KI¥. If H\ § = K!¥ then, by



Lemma 3, for each v € S, H \ (S\ {v}) has at most 16 edges. That means
f1(S) < 4(16 — 10) = 24 and

e(H) = fo(S) + f1(S) + fo(S) + f3(S)
<104+24+4+30+4
— 68 < 70 = 5(9).

Hence, by our inductive assumption, fo(S) < s(n —4) for all n > 7.

If T is a subset of size 4 of V(S(n)) which spans 4 edges, then fo(7T) =
s(n —4), fi(T) = 3(",") + |%52], fo(T) = 5(n — 4) and f3(T) = 4. We
have fo(S) < s(n—4) = fo(T) and, by Lemma 4 and Proposition 2, f;(S) <
3(",Y) + |52 = fi(T). Since e(H) = s(n) and f3(S) = f3(T) = 4, letting

m =n — 4 we must have
f31(S) = fo(T) = 5m. (4)

We want to show that every vertex in H \ S is in precisely 5 edges which
have two vertices in S. Let a,b,c,d, e be the number of vertices in H \ S
which are in, respectively, precisely 6, precisely 5, precisely 4, precisely 3 and
at most 2 edges with the other two vertices in .S. Then

m=a+b+c+d+e, (5)
5m < fo(S) < 6a + 5b+ 4c + 3d + 2e
= 6m — (b+ 2c+ 3d + 4e) (6)
and hence
a>c+2d+ 3e. (7)

Let A be the set of vertices in H \ S which are in 6 edges with the other
two vertices in S. By way of contradiction, suppose |A| = a > 0. For each
x € A, the subgraph of H spanned by SU{xz} is Kég). By Lemma 3, for each
y & (SUu{zx}), SU{z,y} spans at most 16 edges of H, at most 6 containing
y. So if y is in j edges with the other two vertices in S, then y can be in
at most 6 — j edges of the form yuv where u € A and v € S. That means
there are no edges with one vertex in S and the other two in A, and at most

(ab + 2ac + 3ad + 4ae) edges with one vertex in S, one in A, and one in
V(H)\ (SUA). Hence

fl(S)Sab—|—2ac—|—3ad+4ae+3(mz_a>+ {m;aJ (8)
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where we have used Proposition 2 to get an upper bound for the number of
edges with one vertex in S and two in V(H) \ SU A. From (6), (7) and (8)
we get

A+ RS <3 ) + [ B2 +6m
2 2
— (b+2c+3d+4e) + a(b+ 2c + 3d + 4e)
:3(m2_a + mz_a +6m
+(a—1)[gb+c+d+ez+gc+2d+3el]
~m—a by (5) <aby (7)
§3<m5a>+m7_+6m+(a—1)
:m;a<3m—3a—2>+5m+am
~ mBm+8) a
—T—§<4m—3a—2>

< LMJ +%—g[(m—2)—l—3(m—a)]

_ {m(&z + S)J

The last inequality holds because m > 3 and a > 0. Hence,

£(5) + Fa(S <{m3m+8J

:<) | +5m

= f(T +f2( )

a contradiction, since fy(S) = fo(T') and f3(S) = f3(T") implies that f1(S) +
2f2(S) = fi(T) + f2(T). Thus a = 0 and, by inequality (7), c =d =e = 0.
Hence m = b and fi(S) = 3(%) + [2], f2(S) = 5m, and each vertex in
V(H)\ S is in precisely 5 edges of H which have two vertices in S.

Since f1(S) = 3("54) + | 24|, the multigraph H(a,b,c,d) must be in
“(n —4) (this follows by Lemma 4 and by Proposition 2 if n —4 > 5, but
it is also true if n — 4 is equal to 3 or 4, by the remarks after the proof
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of Proposition 2, since no edge multiplicity of H(a,b,c,d) can be greater
than 4). We want to show H(a,b,c,d) is isomorphic to G} _,, that is that
M (H (a,b,c,d)) has only one component (so it is complete equibipartite).

Let = and y be vertices of H \ S such that u(x,y) = 4 and, by way of
contradiction, suppose M (H (a, b, ¢, d)) has more than one component. Then
there exists z € V(H)\ S such that p(z, 2) = u(y, z) = 3. The subgraph of H
induced by SU{x, z} has 17 edges, so, by Lemma 3, two of the three missing
edges of (SU{x, z})(g) must be complementary, and the only possibility is
that one contains x and two vertices of S, while the other contains z and the
other two vertices of S, say xab and zcd. Similarly SU{y, z} has 17 edges, and
its two missing complementary edges must each contain precisely two vertices
of S. Since one is zcd, the other must be yab. This is a contradiction, because
S U {x,y} induces 18 edges in H, and if xab and yab are the two missing
edges, then S U {x,y} induces a copy of F(3,3). Hence, M(H (a,b,c,d)) has
only one component.

Let A, B be the vertex partition for M(H (a,b,c,d)), which is a complete
bipartite graph. Suppose z,z € A and y € B and that xab and ycd are the
missing edges in the subgraph of H induced by SU{z,y}. Hence zab and ycd
must be the missing edges in the subgraph of H induced by SU{z,y}. The
multiplicity of zz in H(a,b,c,d) is two, so there are four missing edges in
the subgraph of H induced by SU{z, z}: zab, zab and two edges containing
x and z and one vertex in S. There are three non-isomorphic ways for this
to occur: xzc,xzd or xza,xrzc or xza,xzb. For the first, the four missing
edges would be {zab, zab, rzc,xzd} in which case there would be a copy of
F(3,3) with special edge xzb. The same thing would occur for the second
possibility. So the four missing edges must be {zza, xzb, xab, zab} and this
must be true for each x, z € A. Similarly, for each u,v € B, the four missing
edges in the subgraph of H induced by SU{u, v} are {uve, uvd, ucd, ved}. By
the inductive hypothesis, we know that H \ S is isomorphic to S(n —4). To
complete the proof, we need to show this S(n — 4)-subgraph “fits together”
with the edges of H which intersect S to form S(n), that is we need to show
each edge of H disjoint from S intersects both A and B (since we already
know each edge of H which hits S intersects both AU {a,b} and BU{c,d}).
If z,y,z € A, then wac, xad, xcd, yac, yad, yed, zac, zad, zcd are all edges of
H, so if zyz is also an edge we have an F'(3,3)-subgraph, with an identical
argument if z,y, 2z € B. [ |
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4 Final Comments and Further Problems

F(3,3) is critically 3-colorable, meaning it is not 2-colorable but deleting
any edge results in a 2-colorable 3-graph. Let H be any critically 3-colorable
3-graph. Since S(n) is 2-colorable it is certainly H-free, so m(H) > 3. It
may well be true that 7(H) must be equal to 3. Sidorenko [15] showed that
the stronger statement that ex(n; H) = s(n) for sufficiently large n is not
necessarily true; his example is H = K, é?’) and n odd.

Let #H be the family of all 3-graphs H on [6] which have 10 edges, pre-
cisely one edge from each complementary pair of sets in [6]®®. Of course
F(3,3) is in ‘H. It would be interesting to determine w(H) for other 3-graphs
H € H. Oneis H(6) = {123,126, 135,234, 145, 146, 245, 256, 346, 356}. An
equiblowup of H(6), with the construction repeated in each of the parts, is
the conjectured 3-graph with the maximum number of edges and no copy
of {123,124,134} (see [5]). Like F(3,3), it is self-complementary in [6] and
critically 3-colorable.

The 3-graph {123,124, 125, 126, 134, 135, 136, 234, 235, 236} is another self-
complementary member of H, but it is 2-colorable (the partition {1,2},
{3,4,5,6}). Another interesting member of H is the star Sg = {123,124, 134,
125,135, 145,126, 136, 146, 156}. As pointed out in [10], if P is the set of all
triples of noncollinear points in a projective plane of order 3, then the link-
graph of each vertex is Kj-free, so taking an equiblowup of P, with the
construction repeated within each part, then an equiblowup again, and so
on, yields a sequence of Sg-free 3-graphs with limiting density %. Hence

7(Ss) > =, and it is conjectured that equality holds.
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