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n every beginning calculus class, students
learn to find extreme values of functions.
This process helps students understand the
essence of the derivative and is straight-
forward, especially when the functions are
polynomlals In algebra and precalculus courses,
students are often asked to find extreme values of
polynomial functions in the context of solving an
applied problem; but without the notion of deriva-
tive, something is lost. Either the functions are
reduced to quadratics, since students know the for-
mula for the vertex of a parabola, or solutions are
approximated using a graphing calculator. In this
article, we show that it is possible to find the rela-
tive maximum and minimum values of a cubic poly-
nomial without appealing to the derivative or using
a calculator to find an approximation. Instead, we
will use elementary techniques that are found in,
and are appropriate for, any advanced algebra or
precalculus course. We start by solving the problem
with calculus to give us the form of the solution.

THE CALCULUS SOLUTION

To find the extreme values of a cubic polynomial

fx) = ax® + bx* + cx + d, we can take the derivative to
determine where the graph has a relative maximum or
minimum. The derivative of this function is given by

f'(x) = 3ax® + 2bx + ¢,

and we see that the zeros of this function tell us the
possible relative extreme values of the graph of f.

Our old friend the quadratic formula tells us that the
derivative of f will be zero (the only possible locations
for extrema of f; since it is a polynomial) whenever
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Given that these are two distinct real numbers, we
can use the second derivative test or just check the
function values to determine which value gives a
relative maximum and which value gives a relative
minimum. This solution has the benefit of being
concise, but it requires techniques beyond the
scope of an algebra or precalculus course. The non-
calculus solution, on the other hand, demonstrates
the use of a variety of common algebra concepts
that are taught in courses before calculus but are
seldom applied to solving mathematical problems.

THE NONCALCULUS SOLUTION

In order to solve this problem without the use of
calculus, we use some basic graph transformations,
ideas about roots of polynomials, and the definition of
an odd function. The first step is to show that every
cubi? polynomial graph has rotational symmetry about
a point. We then shift our original function twice to
create a new function. Finally, we see that one of the
roots of this new function corresponds to the x-coordi-
nate of a maximum or minimum value of our original
function. In the process, we recover equation (1).

Step 1: Rotational Symmetry

We start by using a pair of function transforma-
tions to show that the graph of a cubic polynomial
has rotational symmetry about a point. This first
step allows us to begin examining the behavior of
a function by considering a related function that is
more obviously well behaved.

Recall that a function fis odd whenever f(x) =
—f(~x) for all x in the domain of f. Notice that —f(~x)
can be thought of as a combination of two transforma-
tions of the graph of f, a reflection across the y-axis
followed by a reflection across the x-axis. From a geo-
metric viewpoint, the composition of these two reflec-
tions amounts to a 180° rotation about the origin.

Using calculus techniques, de Villiers (2004)
showed that every cubic polynomial of the form
f(x) = ax® + bx® + cx + d has rotational symmetry
about a point on the line
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Our solution to the extrema problem starts by
providing a noncalculus derivation of de Villiers’s

result. First, note that a cubic function f(x) = ax® +
bx* + cx + d is odd if and only if

ax® +bx* +cx+d =—[a(-x)® + (%) + c(—x) + d]

=ax®—bx® +ex—d,

which is true if and only if h = d = 0.
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Fig. 1 The graph of a cubic polynomial function f
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Fig. 2 The graph of g, given by g(x) = f(x + m) - n

More generally, we can show that every cubic
polynomial has rotational symmetry about a point
by first noticing that if f(x) = ax® + bx* + cx + d is a
cubic polynomial, then the graph of f will have rota-
tional symmetry about the point (m, n) if and only
if the function g given by g(x) = f(x + m) — n is an
odd function. Notice that this pair of transforma-
tions moves the point (m, n) on the graph of f to the
origin. We show a sample graph of a cubic in figure
1 and its transformation in figure 2.

By our earlier observation, we know that g will
be odd if and only if g has no constant term and the
coefficient of x* is zero. Now, since n = f(m), we have

n=am’+bm’+cm+d.

So we can rewrite g as follows:

9(x)= flx+m)-n
=alx+m)P+b(x+m) +c(x+m)+d
—(am® +bm* + cm+d)
= a(x® + 3x*m+ 3xm® + m*) + b(x® + 2xm + m?)
+e(x+m)+d—am® —bm* —cm—d
= ax® + 3ax*m + 3axm® + bx* + 2bxm + cx
= ax® + (3am + b)x* + Bam?® + 2bm + ¢)x

But we know that g is odd if and only if the coeffi-
cient of x* is zero. This means we must have
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Thus, we know that the graph of fhas rotational
symmetry about the point
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Moreover, we can now rewrite g as follows:

9(x) = ax® + (Bam + b)x® + (3am?® + 2bm + ¢)x

=ax3+(3a(_—bj+h]x2
3a
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Step 2: Finding the Extreme Values
Now that we know all cubic functions have rotational
symmetry, we can use what we know about roots of
polynomials to find the relative maximum and mini-
mum values of a cubic polynomial. In this step, we
build upon our previous observations and transform
the function g into a new function k whose factoriza-
tion we can determine using the factor theorem.
Recall that if f(x) = ax® + bx® + cx + d with
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and n = f(m), then g(x) = f(x + m) - n is an odd
function and so g(0) = 0. If g is to have a relative
maximum (and a relative minimum), then g must
have two additional real roots that are symmetric
about the origin. Suppose that g has a relative maxi-
mum at (g, M) and we define & by

h(x) = g(x) - M.

Since g has a relative maximum at x = g, we know
that the graph of & will look like the one shown in
figure 3. Moreover, we know that % has a double
root at x = g and one other real root, say x = p.
Thus, we can write h(x) = a(x — ¢)*(x - p). That is,

h(x) = ax’ + (-2aq - ap)x” + (aq® + 2apq)x — apq’.

But k(x) = g(x) - M, and

oo 2]
g(x)—Mzax3+(3M g ]x—M.
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Fig. 3 The graph of h, given by h(x) =g(x) - M

Equating coefficients of x* and x gives us the fol-
lowing two equations:

—2aq—ap=0 (2)
3ac—1*

aq® + 2apq = TR (3)

Equation (2) gives us p = —2¢. Substituting this into
equation (3), we get
3ac— b’

aq® +2a(-2q)q = T

Solving this equation for g gives us
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Thus, the relative maximum value of g is at the
point (g, M) for the appropriate choice of g, given
that * - 3ac > 0. In the case where b* - 3ac =0, we
see that g = 0; and so our graph would be forced to
have a relative maximum at the origin, which is
impossible because g is odd. Thus, our function f
would have no relative extrema. If b* — 3ac < 0, then
q would be undefined, and so the graph of f would
again have no maximum or minimum values. Since
our original assumption was that we had a function
with relative extrema, we know that the value of

I? - 3ac must be positive. Moreover, because of the
symmetry of the graph of g, we know that one value
of g will give us the x-coordinate of the relative max-
imum of g and the other value of g will give us the
x-coordinate of the relative minimum of g. To deter-
mine which value of g yields the relative maximum
and which the relative minimum, we need only con-
sider the value of a. If 2 < 0, then we know that the
long-run behavior of f (and also g) will be that

lim f(x) = —o.
Thus, the corresponding graph would look similar to

the graph shown in figure 1. On the other hand, if @
> 0, then the long-run behavior of f (and g) would be



hnif(x) = oo

and so the graph of fwould be similar to the graph -
shown in figure 4. Therefore, if a > 0, then the
positive value of g would yield the x-coordinate of
the relative maximum of g, and the negative value
of g would yield the x-coordinate of the relative
minimum of g. If a < 0, then the roles of the posi-
tive and negative values of g would be reversed.

If we had chosen to look for a relative minimum,
we would have shifted the graph of & upward instead
of downward. The function % would still have a
double root at x = g and one other root, so the calcu-
lations above would follow through without change.

Putting It All Together

Now, since we were originally concerned with find-
ing the relative maximum value of f, we need to
translate the x-value of the relative maximum of g
back to correspond to the graph of f. That is, since
the graph of fhas its point of rotational symmetry
on tHe line x = m, the graph of f will have a relative
maximum at the point (m + g, f(m + q)). But notice
that since x = m + g, this gives us

¥ —bh b -3ac
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This is equation (1).

AN EXAMPLE

One of the standard optimization problems students
encounter concerns a package that is to be sent through
the mail (see fig. 5). Some postal guidelines require
that the combined length and girth of a package with a
square cross-section cannot exceed a fixed amount—
for example, 84 inches. (The girth is the perimeter of
the square end.) The question, of course, is what is the
largest package (in terms of volume) that you can send?
Using a bit of analytic geometry, we see that we can
answer this question by finding the maximum value of
V(x) = 84x” - 4x”, where x is the length of the square
end of the box. The derivative of V'is given by V'(x) =
168x — 12x* and will be zero whenever x =0 or x = 14.
Since the coefficient of x* is negative, we know that the
larger value, x = 14, gives the relative maximum.

Using the techniques derived in the previous
sections of this article, we see that the function V
will have a relative maximum at the point whose
x-value is given by

637 ~84 1+/84% — 3(—4)(0) :

3(4)

Again, since the leading coefficient is negative,
we know that the relative maximum will be at the
larger x-value. Therefore, the relative maximum

&y

Fig. 4 The graph of a cubic polynomial with a positive
leading coefficient

X

Fig. 5 A package to be mailed

value of V will occur at x = 14, matching the value
given by the calculus solution.

CONCLUSION

We have seen that using some basic precalculus
techniques, we can find the relative maximum

and minimum of a cubic polynomial function. In
this we have found a solution to a problem that
previously required the use of calculus. This new
method is applicable to any precalculus course and
demonstrates the usefulness of a variety of alge-
braic techniques in new and interesting ways.
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