All tangled up in knots

Ryan Hansen

Motivation for this talk

- Understanding some foundational concepts
- Differentiate between some knots
- Present a few interesting (and sometimes a little surprising) results
- State a few open problems
- Mention applications

What is a knot or link?

- Knot - simple closed curve in space

- Link - disjoint union of knots

Reidemeister moves and ambient isotopy

Unknot vs Trefoil

- Wolfgang Haken, I96I

Open Problem:
Write a computer program
impletenting Haken's algorithm

- Hass and Lagrias - $\mathbf{2}^{\wedge}(1,000,000,000 n)$

In case you needed more convincing...

Some invariants

Another example:

Open problems for p-colorability

- Is there a relationship between $c(K)$ and the largest prime that admits a p-coloring?
- If K is p-colorable for what q is K q -colorable ($\mathrm{q}=\mathrm{kp}$, but what others)?

Algebraic Knots

- Formed by closure of a tangle

A simple tangle:

More on tangles...

- Addition

- Multiplication

Example:

3

32

32-4

Surprising tangle test

$-232 \stackrel{?}{\cong} 3-23$
$2+\frac{1}{3+\frac{1}{-2}}=2+\frac{2}{5}=\frac{12}{5}=\frac{12}{5}=3-\frac{3}{5}=3+\frac{1}{-2+\frac{1}{3}}$

Nakanishi＇s Conjecture ふかーふが， $+$
Reidemeister Type I，II and III

On a simple tangle

$$
\begin{aligned}
\overline{\overline{-2}} & =\{5 k-2 \mid k \in \mathbb{Z}\} \\
\overline{-1} & =\{5 k-1 \mid k \in \mathbb{Z}\} \\
\overline{0} & =\{5 k \mid k \in \mathbb{Z}\} \\
\overline{1} & =\{5 k+1 \mid k \in \mathbb{Z}\} \\
\overline{2} & =\{5 k+2 \mid k \in \mathbb{Z}\}
\end{aligned}
$$

）（

Tangle algebra

- Addition
- Multiplication

$2 \cdot 1$

$2 \cdot 2$

This shows:

- Any algebraic link is $(2,2)$-equivalent to a link of two or fewer crossings

Interesting

- $(2,2)$-moves preserve 5-colorability

- (p,q)-moves preserve certain colorabilities too

Knot composition

- Denoted $K_{1} \# K_{2}$
- Many ways

- Composite vs. Prime

Big Unsolved Question

- Show that the crossing number of a composite knot is the sum of the crossing numbers of the factor knots, that is,

$$
c\left(K_{1} \# K_{2}\right)=c\left(K_{1}\right)+c\left(K_{2}\right)
$$

1988 (Kauffman, Murasugi and Thistlethwaite) conjecture holds when $\mathrm{K} \# \mathrm{~J}$ is alternating

Applications

- DNA
- Synthesis of knotted molecules
- Statistical Mechanics
- Graph Theory
- Quantum Computing

Questions?

