Theorem

Let *a* be a nonzero real number, the graph of the equation

 $r\sin\theta = a$

is a horizontal line *a* units above the pole if a > 0 and |a| units below the pole if a < 0.

Theorem

Let *a* be a nonzero real number, the graph of the equation

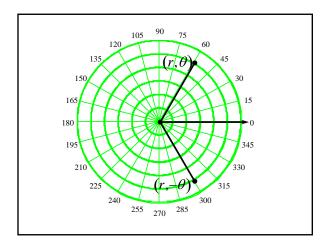
 $r\cos\theta = a$

is a vertical line *a* units to the right of the pole if a > 0 and |a| units to the left of the pole if a < 0.

Identify and graph the equation: $r = 4\cos\theta$

$$r^{2} = 4r\cos\theta$$
$$x^{2} + y^{2} = 4x$$
$$x^{2} - 4x + y^{2} = 0$$
$$x^{2} - 4x + 4 + y^{2} = 4$$
$$(x - 2)^{2} + y^{2} = 4$$

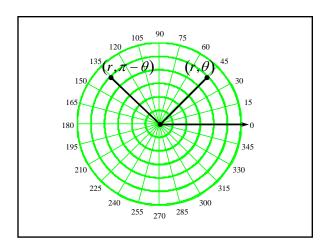
Theorem


Let *a* be a positive real number. Then,

 $r = 2a \sin \theta$ Circle: radius a; center
at (0, a) in rectangular
coordinates. $r = -2a \sin \theta$ Circle: radius a; center
at (0, -a) in rectangular
coordinates.

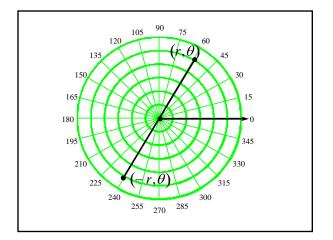
Theorem

Let *a* be a positive real number. Then,


 $r = 2a\cos\theta$ Circle: radius a; center
at (a, 0) in rectangular
coordinates. $r = -2a\cos\theta$ Circle: radius a; center
at (-a, 0) in rectangular
coordinates.

Theorem Tests for Symmetry

Symmetry with Respect to the Polar Axis (*x*-axis):


In a polar equation, replace θ by $-\theta$. If an equivalent equation results, the graph is symmetric with respect to the polar axis.

Theorem Tests for Symmetry

Symmetry with Respect to the Line $\theta = \pi/2$ (y-axis):

In a polar equation, replace θ by $\pi - \theta$. If an equivalent equation results, the graph is symmetric with respect to the line $\theta = \pi/2$.

Theorem Tests for Symmetry

Symmetry with Respect to the Pole (Origin):

In a polar equation, replace r by -r. If an equivalent equation results, the graph is symmetric with respect to the pole.