

Law of Cosines:

$$
\begin{aligned}
& \|u-v\|^{2}=\|u\|^{2}+\|v\|^{2}-2\|u\|\|v\| \cos \theta \\
& \left(a_{1}-a_{2}\right)^{2}+\left(b_{1}-b_{2}\right)^{2}= \\
& \left(a_{1}^{2}+b_{1}^{2}\right)+\left(a_{2}^{2}+b_{2}^{2}\right)-2\|u\| v \| \cos \theta \\
& -2 a_{1} a_{2}-2 b_{1} b_{2}=-2\|u\|\|v\| \cos \theta \\
& a_{1} a_{2}+b_{1} b_{2}=\|u\|\| \| v \| \cos \theta \\
& \hline
\end{aligned}
$$

If $\mathbf{v}=a_{1} \mathbf{i}+b_{1} \mathbf{j}$ and $\mathbf{w}=a_{2} \mathbf{i}+b_{2} \mathbf{j}$ are two vectors, the dot product $\mathbf{v} \cdot \mathbf{w}$ is defined as

$$
\mathbf{v} \cdot \mathbf{w}=a_{1} a_{2}+b_{1} b_{2}
$$

Theorem Angle between Vectors
If \mathbf{u} and \mathbf{v} are two nonzero vectors, the angle $\theta, 0 \leq \theta<\pi$, between \mathbf{u} and \mathbf{v} is determined by the formula

$$
\cos \theta=\frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\|\|\mathbf{v}\|}
$$

If $\mathbf{v}=-2 \mathbf{i}+5 \mathbf{j}$ and $\mathbf{w}=4 \mathbf{i}+\mathbf{j}$, find
(a) $\mathbf{v} \cdot \mathbf{W}$
(b) $\mathbf{v} \cdot \mathbf{v}$
(a) $\mathbf{v} \cdot \mathbf{w}=(-2) 4+(5) 1$

$$
=-8+5=-3
$$

(b) $\mathbf{v} \cdot \mathbf{v}=(-2)(-2)+(5)(5)$

$$
=4+25=29
$$

Find the angle θ between $\mathbf{u}=2 \mathbf{i}-\mathbf{j}$ and $\mathbf{v}=4 \mathbf{i}+3 \mathbf{j}$.

$$
\begin{gathered}
\cos \theta=\frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\|\|\mathbf{v}\|} \\
\mathbf{u} \cdot \mathbf{v}=(2) 4+(-1) 3=8-3=5 \\
\|\mathbf{u}\|=\sqrt{2^{2}+(-1)^{2}}=\sqrt{5} \\
\|\mathbf{v}\|=\sqrt{4^{2}+3^{2}}=\sqrt{16+9}=\sqrt{25}=5
\end{gathered}
$$

$$
\begin{gathered}
\cos \theta=\frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\| \boldsymbol{v} \|}=\frac{5}{\sqrt{5} \cdot 5}=\frac{1}{\sqrt{5}} \\
\theta \approx 63.4^{\circ}
\end{gathered}
$$

$$
\mathbf{v}=\|\mathbf{v}\|(\cos \alpha \mathbf{i}+\sin \alpha \mathbf{j})
$$

Theorem
Two vectors \mathbf{v} and \mathbf{w} are orthogonal if and only if

$$
\mathbf{V} \cdot \mathbf{W}=0
$$

Determine whether the vectors $\mathbf{v}=4 \mathbf{i}-\mathbf{j}$ and $\mathbf{w}=2 \mathbf{i}+8 \mathbf{j}$ are orthogonal.

$$
\mathbf{v} \cdot \mathbf{w}=(4) 2+(-1) 8=0
$$

