$$x^2 = -1$$

$$i^2 = -1$$

Complex numbers are numbers of the form a + bi, where a and b are real numbers. The real number a is called the **real part** of the number a + bi; the real number b is called the **imaginary part** of a + bi.

$$z = x + yi = (r \cos \theta) + (r \sin \theta)i$$

Cartesian Polar Form Form

$$z = r(\cos\theta + i\sin\theta)$$

where θ , $0 \le \theta < 2\pi$, is the **argument of z**

Theorem

Let $z_1 = r_1(\cos\theta_1 + i\sin\theta_1)$ and $z_2 = r_2(\cos\theta_2 + i\sin\theta_2)$ be two complex numbers. Then

$$z_1 z_2 = r_1 r_2 \left[\cos(\theta_1 + \theta_2) + i \sin(\theta_1 + \theta_2) \right]$$

If $z_2 \neq 0$, then

$$\frac{z_1}{z_2} = \frac{r_1}{r_2} \left[\cos(\theta_1 - \theta_2) + i \sin(\theta_1 - \theta_2) \right]$$

If
$$z = 4(\cos 40^{\circ} + i \sin 40^{\circ})$$
 and $w = 6(\cos 120^{\circ} + i \sin 120^{\circ})$ find (a) zw (b) z/w

Theorem DeMoivre's Theorem

If $z = r(\cos \theta + i \sin \theta)$ is a complex number, then

$$z^n = r^n (\cos n\theta + i \sin n\theta)$$

where $n \ge 1$ is a positive integer.