

To solve a right triangle means to find the missing lengths of its sides and the measurements of its angles.

Use the figure. If $a=4$ and $\alpha=35^{\circ}$, find b, c, and β.

A 25 foot ladder is leaning against a wall and forms an angle of 70° with the ground. How high up the wall is the top of the ladder?

Yola just planted a Hybrid Elm. The nursery claims the tree grows 12 feet per year. Yola wants to verify the claim. She walks 100 feet from the base of the tree and, using a transit that is 2 feet off the ground, determines the angle of elevation is 5.7°. One year later, the angle of elevation 100 feet from the tree is 11.9°. Is the nursery's claim true?

$$
\begin{gathered}
h=100 \tan 5.7^{\circ} \approx 9.98 \text { feet } \\
\tan 11.9^{\circ}=\frac{h+g}{100} \\
h+g=100 \tan 11.9^{\circ} \\
g=100 \tan 11.9^{\circ}-h \\
g=21.07-9.98=11.09 \text { feet }
\end{gathered}
$$

Height of tree after 1 year: $2+9.98+$ $11.09=23.07$ feet

$h=$ height of tree above transit
$g=$ growth of tree during first year

$$
\tan 5.7^{\circ}=\frac{h}{100} \quad \tan 11.9^{\circ}=\frac{h+g}{100}
$$

