The unit circle is a circle whose radius is 1 and whose center is at the origin

Since $r=1$:

$$
s=r \theta
$$

becomes

$$
s=\theta
$$

$P=(a, b)$ the point on the unit circle that corresponds to t.

The sine function matches t with the y-coordinate of P

$$
\sin t=b
$$

The cosine function matches t with the x-coordinate of P
\square

Let t be a real number and let $P=\left(\frac{1}{4},-\frac{\sqrt{15}}{4}\right)$ be the point on the unit circle that corresponds to t. Find the exact value of the six trigonometric functions.

$$
(a, b)=(1 / 4,-\sqrt{15} / 4)
$$

$$
\sin t=b=-\frac{\sqrt{15}}{4} \quad \cos t=a=\frac{1}{4}
$$

$$
\begin{gathered}
(a, b)=(1 / 4,-\sqrt{15} / 4) \\
\tan t=\frac{b}{a}=\frac{-\sqrt{15} / 4}{1 / 4}=-\sqrt{15} \\
\csc t=\frac{1}{b}=\frac{1}{-\sqrt{15} / 4}=-\frac{4}{\sqrt{15}}=-\frac{4 \sqrt{15}}{15} \\
\sec t=\frac{1}{a}=\frac{1}{1 / 4}=4
\end{gathered}
$$

$$
(a, b)=(1 / 4,-\sqrt{15} / 4)
$$

$$
\cot t=\frac{a}{b}=\frac{1 / 4}{-\sqrt{15} / 4}=-\frac{1}{\sqrt{15}}=-\frac{\sqrt{15}}{15}
$$

Given that $\sec \theta=\frac{5}{-2}$ and $\sin \theta>0$, find the exact value of the remaining five trigonometric functions.

$$
\begin{gathered}
a=-2, b=\sqrt{21}, r=5 \\
\sin \theta=\frac{b}{r}=\frac{\sqrt{21}}{5} \quad \cos \theta=\frac{a}{r}=\frac{-2}{5} \\
\tan \theta=\frac{b}{a}=\frac{\sqrt{21}}{-2}=-\frac{\sqrt{21}}{2} \\
\csc \theta=\frac{r}{b}=\frac{5}{\sqrt{21}}=\frac{5 \sqrt{21}}{21} \\
\cot \theta=\frac{a}{b}=\frac{-2}{\sqrt{21}}=-\frac{2 \sqrt{21}}{21}
\end{gathered}
$$

The domain of the sine function is the set of all real numbers.
The domain of the cosine function is the set of all real numbers.
The domain of the tangent function is the set of all real numbers except odd multiples of $\pi / 2\left(90^{\circ}\right)$.
The domain of the secant function is the set of all real numbers except odd multiples of $\pi / 2\left(90^{\circ}\right)$.

RANGE OF THE

 TRIGONOMETRIC FUNCTIONSLet $P=(a, b)$ be the point on the unit circle that corresponds to the angle θ.
Then, $-1 \leq a \leq 1$ and $-1 \leq b \leq 1$.

$$
\begin{array}{cc}
\sin \theta=b & \cos \theta=a \\
-1 \leq \sin \theta \leq 1 & -1 \leq \cos \theta \leq 1 \\
|\sin \theta| \leq 1 & |\cos \theta| \leq 1
\end{array}
$$

$$
|\csc \theta|=\frac{1}{|\sin \theta|}=\frac{1}{|b|} \geq 1
$$

$$
\csc \theta \leq-1 \text { or } \csc \theta \geq 1
$$

$$
|\sec \theta|=\frac{1}{|\cos \theta|}=\frac{1}{|a|} \geq 1
$$

$$
\sec \theta \leq-1 \text { or } \sec \theta \geq 1
$$

A function f is called periodic if there is a positive number p such that whenever θ is in the domain of f, so is $\theta+p$, and

$$
f(\theta+p)=f(\theta)
$$

Theorem Even-Odd Properties

$$
\begin{array}{ll}
\sin (-\theta)=-\sin \theta & \csc (-\theta)=-\csc \theta \\
\cos (-\theta)=\cos \theta & \sec (-\theta)=\sec \theta \\
\tan (-\theta)=-\tan \theta & \cot (-\theta)=-\cot \theta
\end{array}
$$

