A function f is said to be one-to-one if, for any choice of numbers x_{1} and $x_{2}, x_{1} \neq x_{2}$, in the domain of f, then $f\left(x_{1}\right) \neq f\left(x_{2}\right)$.
$\{(1,1),(2,4),(3,9),(4,16)\}$
one-to-one
$\{(-2,4),(-1,1),(0,0),(1,1)\}$ not one-to-one

Use the graph to determine whether the function $f(x)=2 x^{2}-5 x+1$ is one-to-one.

Theorem Horizontal Line Test
If horizontal lines intersect the graph of a function f in at most one point, then f is one-to-one.

Use the graph to determine whether the function $f(x)=x^{3}+x-2$ is one-to-one.

Let f denote a one-to-one function $y=f(x)$. The inverse of \boldsymbol{f}, denoted by f^{-1}, is a function such that $f^{-1}(f(x))=x$ for every x in the domain of f and $f\left(f^{-1}(x)\right)=x$ for every x in the domain of f^{-1}.

Range of f^{-1}

Domain of $f=$ Range of f^{-1}
Range of $f=$ Domain of f^{-1}

Theorem

The graph of a function f and the graph of its inverse f^{-1} are symmetric with respect to the line $y=x$.

Find the inverse of $f(x)=\frac{5}{x-3}, x \neq 3$ The function is one-to-one.

$$
\begin{array}{cl}
y=\frac{5}{x-3} & x=\frac{5}{y-3} \\
& x y-3 x=5 \\
& x y=3 x+5
\end{array}
$$

$$
y=\frac{3 x+5}{x} \quad f^{-1}(x)=\frac{3 x+5}{x}
$$

Verify $f(x)=\frac{3 x+5}{x}$ and $g(x)=\frac{5}{x-3}$ are inverses.

$$
\begin{gathered}
f(g(x))=f\left(\frac{5}{x-3}\right) \\
=\frac{3\left(\frac{5}{x-3}\right)+5}{\frac{5}{x-3}}=\frac{3\left(\frac{5}{x-3}\right)+5}{\frac{5}{x-3}} \cdot \frac{x-3}{x-3}
\end{gathered}
$$

$$
\begin{aligned}
& =\frac{3\left(\frac{5}{x-3}\right)+5}{\frac{5}{x-3}} \cdot \frac{x-3}{x-3}=\frac{15+5(x-3)}{5}=\frac{5 x}{5}=x \\
& g(f(x))=g\left(\frac{3 x+5}{x}\right)=\frac{5}{\frac{3 x+5}{x}-3}=\frac{5}{\frac{3 x+5}{x}-3} \cdot \frac{x}{x} \\
& \quad=\frac{5 x}{3 x+5-3 x}=\frac{5 x}{5}=x
\end{aligned}
$$

