A function f is increasing on an open interval I if, for any choice of x_{1} and x_{2} in I, with $x_{1}<x_{2}$, we have $f\left(x_{1}\right)<f\left(x_{2}\right)$.

A function f is decreasing on an open interval I if, for any choice of x_{1} and x_{2} in I, with $x_{1}<x_{2}$, we have $f\left(x_{1}\right)>f\left(x_{2}\right)$.

A function f is constant on an open interval I if, for any choice of x in I, the values of $f(x)$ are equal.

A function f has a local maximum at c if there is an interval I containing c so that, for all x in $I, f(x)<f(c)$. We call $f(c)$ a local maximum of f.

A function f has a local minimum at c if there is an interval I containing c so that, for all x in $I, f(x)>f(c)$. We call $f(c)$ a local minimum of f.

Theorem

A function is even if and only if its graph is symmetric with respect to the y-axis. A function is odd if and only if its graph is symmetric with respect to the origin.

A function f is even if for every number x in its domain the number $-x$ is also in the domain and
$f(-x)=f(x)$

A function f is odd if for every number x in its domain the number $-x$ is also in the domain and

$$
f(-x)=-f(x)
$$

Determine whether each of the following functions is even, odd, or neither. Then determine whether the graph is symmetric with respect to the y-axis or with respect to the origin.
(a) $g(z)=-z^{2}+2$

$$
\begin{aligned}
& g(-z)=-(-z)^{2}+2=-z^{2}+2 \\
& g(z)=g(-z)
\end{aligned}
$$

Even function, graph symmetric with respect to the y-axis.
(b) $f(x)=-4 x^{5}+3 x$
$f(-x)=-4(-x)^{5}+3(-x)=4 x^{5}-3 x$
$f(x) \neq f(-x)$
Not an even function
$-f(x)=-\left(-4 x^{5}+3 x\right)=4 x^{5}-3 x$
$f(-x)=-f(x)$
Odd function, and the graph is symmetric with respect to the origin.

When functions are defined by more than one equation, they are called piece-wise defined functions.

For the following function f,
$f(x)= \begin{cases}x+3 & -2 \leq x<1 \\ 3 & x=1 \\ -x+3 & x>1\end{cases}$
(a) Find $f(-1), f(1)$, and $f(3)$.
(b) Determine the domain of f.
(c) Graph f.
(d) Use the graph to find the range of f.
(a) $f(-1)=-1+3=2$

$$
\begin{aligned}
& f(1)=3 \\
& f(3)=-3+3=0
\end{aligned}
$$

$$
f(x)= \begin{cases}x+3 & -2 \leq x<1 \\ 3 & x=1 \\ -x+3 & x>1\end{cases}
$$

(b) The domain of f is $\{x \mid x \geq-2\}$ or $[-2, \infty)$.
(d) From the graph, the range of f is

$$
\{y \mid y<4\} \text { or }(-\infty, 4)
$$

