Let X and Y be two nonempty sets of real numbers. A function from X into Y is a rule or a correspondence that associates with each element of X a unique element of Y.

The set X is called the domain of the function.
For each element x in X, the corresponding element y in Y is called the image of x. The set of all images of the elements of the domain is called the range of the function.

Theorem Vertical-Line Test

A set of points in the $x y$-plane is the graph of a function if and only if any vertical line intersects the graph in at most one point.

$$
f(x)=2 x^{2}+5
$$

$f(x)$ is the number that results when the number x is applied to the rule for f.

$$
\begin{gathered}
f(3) \quad=2(3)^{2}+5=23 \\
f(x+h)=2(x+h)^{2}+5 \\
=2\left(x^{2}+2 x h+h^{2}\right)+5 \\
=2 x^{2}+4 x h+2 h^{2}+5
\end{gathered}
$$

The domain of a function f is the set of real numbers such that the rule makes sense.
 Find the domain of the following functions:

$$
g(x)=3 x^{3}-5 x+1
$$

Domain of g is all real numbers.

Domain of s is $\{t \mid t \neq 1\}$.

$$
\begin{aligned}
h(z)=\sqrt{z+2} & \\
z+2 & \geq 0 \\
z & \geq-2
\end{aligned}
$$

Domain of h is $\{z \mid z \geq-2\}$.

$$
s(t)=\frac{4}{t-1}
$$

