Lab on Polar Functions

1. Graph of sin t (1 point)

What is the polar graph of $\sin (\mathrm{t})$?
a. A circle of radius 1 centered at the origin.
b. A circle of radius $1 / 2$ centered at $(0,1 / 2)$.
c. A circle of radius $1 / 2$ centered at $(0,-1 / 2)$.
d. A circle of radius $1 / 2$ centered at $(1 / 2,0)$.
e. A circle of radius $1 / 2$ centered at $(-1 / 2,0)$.

2. Smallest t (1 point)

Set the grapher to start when $t=0$. What ending value of t is the smallest you need to have the entire circle traced?
a. $\mathrm{Pi} / 4$
b. $\mathrm{Pi} / 2$
c. Pi
d. $2 * \mathrm{Pi}$
e. $4 * \mathrm{Pi}$

3. sin nt (0.5 point)

Graph $\sin \left(\mathrm{n}^{*} \mathrm{t}\right)$ for various integer values of n . Make a conjecture about the number of "petals" on the "rose."
a. n petals
b. n petals if n is even, $2^{*} n$ petals if n is odd
c. n petals if n is odd, $2 * n$ petals if n is even
d. $2^{*} \mathrm{n}$ petals

4. cos nt (0.5 point)

Graph $\cos \left(\mathrm{n}^{*} \mathrm{t}\right)$ for various integer values of n . Make a conjecture about the number of "petals" on the "rose."
a. n petals
b. n petals if n is even, $2^{*} n$ petals if n is odd
c. n petals if n is odd, $2^{*} n$ petals if n is even
d. $2 * \mathrm{n}$ petals

5. Cardioid (1 point)

The graph of $1-\sin (t)$ is called a cardioid, because it is heart shaped. Find the polar equation of another cardioid, whose graph is shown below.

a. $1-\sin (\mathrm{t})$
b. $1+\sin (\mathrm{t})$
c. $1-\cos (\mathrm{t})$
d. $1+\cos (\mathrm{t})$

6. Symmetry 1 (0.5 point)

The graph is symmetric with respect to the polar axis. What does this say about the algebraic symmetry of the function?
a. $r(t)=r(-t)$
b. $r(t)=-r(t)$
c. $r(t)=r(P i / 2-t)$
d. $\mathrm{r}(\mathrm{t})=\mathrm{r}(\mathrm{Pi}-\mathrm{t})$

7. Symmetry 2 (0.5 point)

A graph is symmetric with respect to the vertical line corresponding to $t=$ $\mathrm{Pi} / 2$. What does this say about the algebraic symmetry of the function?
a. $r(t)=r(-t)$
b. $r(t)=-r(t)$
c. $r(t)=r(P i / 2-t)$
d. $\mathrm{r}(\mathrm{t})=\mathrm{r}(\mathrm{Pi}-\mathrm{t})$

8. Shape matching (1 point)

Be a little bit artistic here.

$$
\sin (t) * \cos (3 * t) \text { Fish }
$$

$\sin (\mathrm{t}) * \cos (2 * \mathrm{t})$ Butterfly
$\sin (\mathrm{t}) * \cos (5 * \mathrm{t})$ Spider

9. Spiral(1 point)

Think about what the graph of $r(t)=t$ might look like before you try to graph it. What happens to the graph if you allow negative values of t ?
a. It is a circle, with symmetric values for negative t.
b. It is a parabola, with symmetric values for negative t.
c. It is a spiral, opening out in the opposite direction for negative t.
d. It is a cross between a fish and a spider, and is not defined for negative t.
e. It is a rose with more and more petals, whether t is positive or negative.

10. Fine print (1 point)

I wrote the polar grapher using what are called parametric plots, which treat both x and y as depending on t. If you look at the "fine print" at the bottom of the grapher you can see the formulas for how x and y points are being generated. What is the recipe I use?
a. It is based on the conversion formulas from polar to rectangular coordinates, with r given by the polar function of t that is being plotted.
b. It is based on the conversion formulas from rectangular to polar coordinates, with x and y computed by the Pythagorean theorem.
c. It comes from the metric system.
d. It comes from the reciprocal identities.
e. It is based on solving quadratic trig equations to determine x and y.

11. Vertical line test (2 points)

The "vertical line test" can be used to decide if the graph of a given cartesian equation in rectangular coordinates x and y represents a function. Explain in a sentence or two why the vertical line test doesn't apply for graphs of polar functions.

