Lab on Identities

1. Theta (1 point)

Refer to lab page 2. Let angle CAD be represented as θ. What is angle C'A'D' ?
a. $-\theta$
b. $\theta+45^{\circ}$
c. $\theta+90^{\circ}$
d. 2θ

2. Match color (1 point)

Refer to lab page 2. Match the cyan, magenta, yellow, and green lines with the appropriate trig functions.

1. cyan
a. $\sin 2 \theta$
2. magenta
b. $\cos \theta$
3.

c. $\sin \theta$
4. green
d. $\cos 2 \theta$

3. Animate (1 point)

Refer to lab page 2. Hit the Revolve D button and note what happens.
a. angle C'A'D' goes through one revolution, angle CAD goes through 2 revolutions
b. angle CAD goes through one revolution, angle C'A'D' goes through 2 revolutions
c. angle CAD spins and spins
d. angle CAD goes through half a revolution, angle C'A'D' goes through one revolution
e. angle CAD goes through one revolution, angle C'A'D' goes through half a revolution

4. Period (1 point)

Refer to lab page 2. What is the period of the function $y=\cos (2 x)$?
a. $\pi / 2$
b. π
c. 2π
d. 4π

5. Grapher zoom (1 point)

Refer to lab page 3. Use the utility to graph $\cos (2 x)$. Now zoom in to find the x coordinate of the smallest positive x intercept. Answer accurate to three decimal places.
1.

6. Period of $\cos x^{\wedge} 2(1$ point)

Refer to lab page 3. Refresh the grapher's display and plot $\cos (x)^{2}$ (the syntax for the grapher is $\left.\cos (x)^{\wedge} 2\right)$. What is the period of $\cos (x)^{2}$?
a. $\pi / 2$
b. π
c. 2π
d. 4π
7. $\cos ^{\wedge} \mathbf{2 - \operatorname { s i n }}{ }^{\wedge} \mathbf{2}$ (1 point)

Refer to lab page 3. Now plot $\cos (x)^{2}-\sin (x)^{2}$ in the other color. What fact about the new graph supports the fact that $\cos (2 x)=\cos (x)^{2}-\sin (x)^{2}$ is a trig identity?
a. The graph is identically 0
b. The graph is identically 1
c. The graph coincides with the graph of $\sin (2 x)$
d. The graph coincides with the graph of $\cos (2 x)$
e. The graph matches the graph of $(\cos (x)-\sin (x))(\cos (x)+\sin (x))$

8. Identity 1 (0.5 point)

Use the grapher on page 3. What right hand side $f(x)$ makes $(\cos x)^{2}\left(1+(\tan x)^{2}\right)=f(x)$ an identity?
a. -1
b. 0
c. 1
d. $(\sin x)^{2}$
e. $(\cot x)^{2}$
9. I dentity 2 (0.5 point)

Use the grapher on page 3. What right hand side $f(x)$ makes $\sin (\pi / 2+x)=f(x)$ an identity?
a. $\sin x$
b. $-\sin x$
c. $\cos x$
d. $-\cos x$
e. $\pi / 2+\sin x$
f. $\pi / 2+\cos x$

10. Identity 3 (0.5 point)

Use the grapher on page 3. What right hand side $f(x)$ makes $1-(\cos x)^{2} /(1+\sin x)=f(x)$ an identity?
a. -1
b. 0
c. 1
d. $\sin x$
e. $\cos x$
f. $-\sin x$
g. $-\cos x$
11. I dentity 4 (0.5 point)

Use the grapher on page 3. What right hand side $f(x)$ makes $(\cos x)^{4}-(\sin x)^{4}=f(x)$ an identity?
a. $\sin x$
b. $\cos x$
c. $\sin x / 2$
d. $\cos x / 2$
e. $\sin 2 x$
f. $\cos 2 x$
12. Period variations (1 point)

Use the grapher on page 3 . For a between -10 and 10 there are three values of a in the list below for which $\sin x=\cos (x-a)$. What are they?
a. -7.28
b. -4.66
c. -2.72
d. 1.553
e. 1.784 f. 3.143 g. 6.286
h. 7.864

