Section 5.5 The Substitution Rule

It's easy enough to calculate integrals when we know particular antiderivatives:
For Example $\begin{gathered}\int \cos x d x=\sin x+c \\ \text { OR } \quad \int x^{2} d x=\frac{x^{3}}{x}+c\end{gathered}$
But, what do we do when the antiderivative is not obvious?
For Example $\int 3 x^{2} \sqrt{1+x^{3}} d x$
One way is to try to find a substitute for the integrand.

$$
\text { Let } u=1+x^{3}
$$

Note: $\quad \frac{d u}{d x}=3 x^{2}$

$$
d u=3 x^{2} d x
$$

Notice then, that:

$$
\begin{gathered}
\int 3 x^{2} \sqrt{1+x^{3}} d x=\int \sqrt{1+x^{3}} \cdot 3 x^{2} d x \\
=\int \sqrt{u} d u \leftarrow \text { and this integral we can do } \\
=\int u^{\frac{1}{2}} d u \\
=\frac{2}{3} u^{\frac{3}{2}}+c=\frac{2}{3}\left(1+x^{3}\right)^{\frac{3}{2}}+c
\end{gathered}
$$

The idea is that you are doing the chain rule backwards:
You already know the Chain Rule: $\quad \frac{d}{d x}[f(g(x))]=f^{\prime}(g(x)) g^{\prime}(x)$

Notice:

$$
\begin{gathered}
\int f^{\prime}(g(x)) g^{\prime}(x) d x=\int \frac{d}{d x}[f(g(x))] d x \\
=f(g(x))
\end{gathered}
$$

So, if I go back to my earlier example:

$$
\int 3 x^{2} \sqrt{1+x^{3}} d x=\frac{2}{3}\left(1+x^{3}\right)^{\frac{3}{2}}+c
$$

I should be able to regenerate through the derivative, Let's check:

$$
\begin{aligned}
& \frac{d}{d x}\left(\frac{2}{3}\left(1+x^{3}\right)^{\frac{3}{2}}+c\right) \\
= & \frac{2}{3}\left(\frac{3}{2}\right)\left(1+x^{3}\right)^{\frac{1}{2}}\left(3 x^{2}\right)+0 \\
= & \left(1+x^{3}\right)^{\frac{1}{2}}\left(3 x^{2}\right) \quad \text { tada! }
\end{aligned}
$$

The hard part to the method is training yourself to identify the "u" to start with. Any ideas?
Note that $u=g(x)$

Key: The u is the "inside" function.
Let's do some examples.
Pg. 298 \#6) $\quad \int e^{\sin x} \cos x d x=$?
Let $u=\sin x$
$d u=\cos x d x$
$=\int e^{u} d u=e^{u}+c=e^{\sin x}+c$
Pg. 298 \#12) $\int(2-x)^{6} d x=$?
Let $u=2-x$
$d u=-1 d x \leftarrow$ this time we do not have a -1 already
So we have to force it in without changing value

$$
\begin{aligned}
\int(2-x)^{6} d x & =-\int(2-x)^{6}(-1) d x \\
& =-\int u^{i} d u \\
& =-\frac{u^{7}}{7}+c \\
= & -\frac{(2-x)^{7}}{7}+c
\end{aligned}
$$

Pg. 299 \#14) $\int \frac{x}{\left(x^{2}+1\right)^{2}} d x=$?
Let $u=x^{2}+1$

$$
d u=2 x d x
$$

$$
\begin{aligned}
& \int \frac{x}{\left(x^{2}+1\right)^{2}} d x=\frac{1}{2} \int \frac{1}{\left(x^{2}+1\right)^{2}} \cdot 2 x d x \\
& \frac{1}{2} \int \frac{1}{u^{2}} \cdot d u \\
& \frac{1}{2} \int u^{-2} d u \\
& =\frac{1}{2} \frac{u^{-1}}{-1}+c=\frac{1}{2 u}=-\frac{1}{2\left(x^{2}+1\right)}+c \\
& \int \tan x d x=?
\end{aligned}
$$

Now, this one is different, isn't it? The inside function is x and that's not going to get me anywhere! Ideas? Let's break into trig components...

$$
\int \tan x d x=\int \frac{\sin x}{\cos x} d x
$$

We still do not have "obvious" inside / outside functional relationships, but what do we know about $\sin x$ and $\cos x$ in terms of their derivatives?

$$
\begin{array}{ccc}
u=\cos x & \text { or } & u=\sin x \\
d u=-\sin x d x & & d u=\cos x d x
\end{array}
$$

Which one of these will help us? $u=\cos x$
Why? $\frac{\sin x d x}{\cos x}$ versus $\sin x \cdot \frac{1}{\cos x} d x d u$ has been broken up!

$$
\int \tan x d x=\int \frac{\sin x}{\cos x} d x=\int \frac{1}{\cos x} \cdot \sin x d x
$$

So: $\quad=-\int \frac{1}{\cos x} \cdot(-\sin x) d x$

$$
=-\int \frac{1}{u} d u=-\ln |u|+c=-\ln |\cos x|+c
$$

OK, now a reminder:

$$
-\ln |u|=\ln |u|^{-1} \text { because of log rules (look at pg. 155) }
$$

$-\ln |\cos x|=\ln |\cos x|^{-1}$
So,

$$
\begin{aligned}
& =\ln \left|\frac{1}{\cos x}\right| \\
& =\ln |\sec x|
\end{aligned}
$$

That means, depending on what book you use, you may see:

$$
\int \tan x d x=-\ln |\cos x|+c=\ln |\sec x|+c
$$

So far we have only use the substitution rule on indefinite integrals. How will things change when we use the definite forms (i.e. stuff in limits now).

By example:
\#38) $\int_{0}^{\sqrt{\pi}} x \cos \left(x^{2}\right) d x=$?
Let $u=x^{2}$
$d u=2 x d x$

$$
\begin{gathered}
\int_{0}^{\sqrt{\pi}} x \cos \left(x^{2}\right) d x=\frac{1}{2} \int_{0}^{\sqrt{\pi}} \cos \left(x^{2}\right) \cdot 2 x d x \\
=\frac{1}{2} \int_{\text {What goes here? }}^{\text {What goes here? }} \cos (u) d u
\end{gathered}
$$

Two Alternatives:
One Way: You must show $\underline{\underline{x}=}$ (or whatever variable is at play) when you work this way.

$$
\begin{gathered}
=\frac{1}{2} \int_{x=0}^{x=\sqrt{\pi}} \cos u d u \\
=\left.\frac{1}{2} \sin u\right|_{x=0} ^{x=\sqrt{\pi}} \\
=\left.\frac{1}{2} \sin \left(x^{2}\right)\right|_{0} ^{\sqrt{\pi}} \\
=\frac{1}{2}\left(\sin \left(\sqrt{\pi}^{2}\right)-\sin \left(0^{2}\right)\right) \\
=\frac{1}{2}(\sin (\pi)-\sin (0))=\frac{1}{2}(0-0)=0
\end{gathered}
$$

Another Way: A true change of variable...
From: $u=x^{2} \quad x=0 \quad \Rightarrow \quad u=(0)^{2}$
From: $d u=2 x d x \quad x=\sqrt{\pi} \quad \Rightarrow \quad u=(\sqrt{\pi})^{2}=\pi$

$$
\begin{gathered}
=\frac{1}{2} \int_{0}^{\pi} \cos (u) d u \\
=\left.\frac{1}{2} \sin u\right|_{0} ^{\pi} \\
=\frac{1}{2}(\sin (\pi)-\sin (0)) \\
=\frac{1}{2}(0-0) \\
=0
\end{gathered}
$$

pg. 299 \#42) $\int_{0}^{\frac{\pi}{2}} \cos x \sin (\sin x) d x$
Let $u=\sin x$

$$
d u=\cos x d x
$$

$$
x=0: u(0)=\sin (0)=0
$$

$$
x=\frac{\pi}{2}: u\left(\frac{\pi}{2}\right)=\sin \left(\frac{\pi}{2}\right)=1
$$

$$
\int_{0}^{\frac{\pi}{2}} \cos x \sin (\sin x) d x=\int_{0}^{\frac{\pi}{2}} \sin (\sin x) \cos x d x
$$

$$
=\int_{0}^{1} \sin (u) d u
$$

$$
=-\left.\cos (u)\right|_{0} ^{1}
$$

$$
=-(\cos (1)-\cos (0))
$$

$$
=1-\cos (1)
$$

\#48) $\int_{0}^{a} x \sqrt{a^{2}-x^{2}} d x \quad$ where a is a constant
Let $u=a^{2}-x^{2}$
$d u=-2 x d x$
$x=0: u(0)=a^{2}-0^{2}=a^{2}$
$x=a: u(a)=a^{2}-a^{2}=0$

$$
\begin{gathered}
\int_{0}^{a} x \sqrt{a^{2}-x^{2}} d x=-\frac{1}{2} \int_{0}^{a} \sqrt{a^{2}-x^{2}}(-2 x) d x \\
-\frac{1}{2} \int_{a^{2}}^{0} \sqrt{u} d u=-\frac{1}{2} \int_{a^{2}}^{0} u^{\frac{1}{2}} d u \\
=+\frac{1}{2} \int_{0}^{a^{2}} u^{\frac{1}{2}} d u \quad \text { Flipped Limits } \\
=\left.\frac{1}{z} \cdot \frac{z}{3} u^{\frac{3}{2}}\right|_{0} ^{a^{2}} \\
=\frac{1}{3}\left(\left(a^{2}\right)^{\frac{3}{2}}-(0)^{\frac{3}{2}}\right) \\
=\frac{1}{3}\left(a^{3}-0\right) \\
=\frac{a^{3}}{3}
\end{gathered}
$$

Handy Info:
Function symmetry can make integral evaluation more easy (but I only use this when it's deadly obvious)

1. If f is continuous on $[-a, a]$ and f is even, then:

$$
\int_{-a}^{a} f(x) d x=2 \int_{0}^{a} f(x) d x
$$

Why? What does this even mean? $f(x)=f(-x)$
Symmetry over the y-axis (like cosine)
Picture:

Area 1 = Area 2, hence we can double one side for total area
2. If f is continuous on $[-a, a]$ and f is odd, then:

$$
\int_{-a}^{a} f(x) d x=0
$$

Why? What does odd mean? $f(x)=-f(x)$ Symmetry over the origin (like $\sin \mathrm{x}$)

Picture:

Area 1 - - Area 2, hence added together the total area $=0$

