Section 5.2 The Definite Integral

As a reminder, in section 5.1 we talked about calculating the area under a curve by adding up the areas of little rectangles, equally spaced, that we made by cutting up an interval into N equal pieces. We determined that the area could be estimated as a limit:

$$
A \approx \lim _{N \rightarrow \infty} \sum_{i=1}^{N} f\left(x_{i}^{*}\right) \Delta x \text { on } x \in[a, b]
$$

where $\Delta x=\frac{b-a}{N}$ and $f\left(x_{i}{ }^{*}\right)$ was the function value at left, right, or midpoints, x_{i}.

Now, we are going to be a bit more general in the sense that these rectangles no longer need to be equally spaced.
So think of the x-line like this:

Now, each Δx is different: $\Delta x_{i}=x_{i}-x_{i-1}$

$$
\text { Example: } \Delta x_{1}=x_{1}-x_{0}
$$

But our sum is still handled essentially the same way:

$$
A \approx \sum_{i=1}^{N} f\left(x_{i}^{*}\right) \Delta x_{i} \text { on } x \in[a, b]=\left[x_{0}, x_{N}\right] \text { (no limit yet!) }
$$

Where $\Delta x_{i}=x_{i}-x_{i-1}$ and $f\left(x_{i}^{*}\right)$ is the function evaluated at the left, right, or midpoint as necessary.

This particular version of calculating area is called the Riemann Sum.

Definition of Definite Integral p. 263 Key Concept

If f is a function defined on $[a, b]$, the definite integral of f from a to b is the number:

$$
\int_{a}^{b} f(x) d x=\lim _{\max \Delta x \rightarrow 0}\left[\sum_{i=1}^{N} f\left(x_{i}^{*}\right) \Delta x_{i}\right]
$$

provided that this limit exists. If it does exist, we say that f is integrable on $[a, b]$.

Notation and Language:

Limits of Integration

Theorem: If f is continuous on $[a, b]$, or if f has only a finite number of jump discontinuities, then f is integrable on $[a, b]$. That means $\int_{a}^{b} f(x) d x$ exists.

Example: Write $\lim _{N \rightarrow \infty} \sum_{i=1}^{N} x_{i} \sin \left(x_{i}\right) \Delta x_{i}$ on $[0, \pi]$ as a definite integral. (DO NOT SOLVE)

$$
\lim _{N \rightarrow \infty} \sum_{i=1}^{N} x_{i} \sin \left(x_{i}\right) \Delta x_{i}=\int_{0}^{\pi}(x \sin (x)) d x
$$

Evaluating a Riemann Sum
Need to Know:

1. $\sum_{k=1}^{N} k=\frac{N(N+1)}{2}$

For Example: $\sum_{k=1}^{5} k=1+2+3+4+5=15$
Or: $\sum_{k=1}^{5} k=\frac{5(5+1)}{2}=\frac{5(6)}{2}=\frac{30}{2}=15$
2. $\sum_{k=1}^{N} k^{2}=\frac{N(N+1)(2 \mathrm{~N}+1)}{6}$

For Example: $\sum_{k=1}^{5} k^{2}=1^{2}+2^{2}+3^{2}+4^{2}+5^{2}=1+4+9+16+25=55$
Or: $\sum_{k=1}^{5} k^{2}=\frac{5(5+1)(2 \cdot 5+1)}{6}=\frac{5(6)(11)}{6}=55$
3. $\sum_{k=1}^{N} k^{3}=\left(\frac{N(N+1)}{2}\right)^{2}$

For Example: $\sum_{k=1}^{5} k^{3}=1^{3}+2^{3}+3^{3}+4^{3}+5^{3}=1+8+27+64+125=225$
Or: $\sum_{k=1}^{5} k^{3}=\left(\frac{5(5+1)}{2}\right)^{2}=\left(\frac{5(6)}{2}\right)^{2}=15^{2}=225$
4. $\sum_{k=1}^{N} c=N c$

For Example: $\sum_{k=1}^{5} 3=3+3+3+3+3=5(3)=15$
5. $\sum_{k=1}^{N} c a_{i}=c \sum_{k=1}^{N} a_{i}$

For Example: $\sum_{k=1}^{5} 3 k=3(1)+3(2)+3(3)+3(4)+3(5)=3(1+2+3+4+5)=45$
6. $\sum_{k=1}^{N}\left(a_{i}+b_{i}\right)=\sum_{k=1}^{N} a_{i}+\sum_{k=1}^{N} b_{i}$
7. $\sum_{k=1}^{N}\left(a_{i}-b_{i}\right)=\sum_{k=1}^{N} a_{i}-\sum_{k=1}^{N} b_{i}$

Example pg. 273 \#20) Use $\int_{a}^{b} f(x) d x=\lim _{N \rightarrow 0}\left[\sum_{i=1}^{N} f\left(x_{i}^{*}\right) \Delta x_{i}\right]$ to evaluate $\int_{1}^{4}\left(x^{2}+2 x-5\right) d x$
Think of $f(x)=x^{2}+2 x-5$ and $[a, b]=[1,4]$
Now, find $\Delta x=\frac{b-a}{N}=\frac{4-1}{N}=\frac{3}{N} \quad$ (because we do not know N)

$$
x_{i}=a+i \Delta x
$$

We need to generalize x_{i} assuming an evenly space partition. So:

$$
x_{i}=1+i\left(\frac{3}{N}\right)
$$

At this point, we just stuff everything we know into the form:

$$
\int_{a}^{b} f(x) d x=\lim _{N \rightarrow 0}\left[\sum_{i=1}^{N} f\left(x_{i}^{*}\right) \Delta x_{i}\right]
$$

So: $\int_{1}^{4}\left(x^{2}+2 x-5\right) d x=\lim _{N \rightarrow \infty} \sum_{i=1}^{N}\left(x_{i}^{2}+2 x_{i}-5\right) \Delta x$

Expand

$$
\begin{gathered}
=\lim _{N \rightarrow \infty} \sum_{i=1}^{N}\left\{\left(\left(1+i\left(\frac{3}{N}\right)\right)^{2}+2\left(1+i\left(\frac{3}{N}\right)\right)-5\right]\left(\frac{3}{N}\right)\right\} \\
\quad=\lim _{N \rightarrow \infty} \frac{3}{N} \sum_{i=1}^{N}\left[1+\frac{6 i}{N}+\frac{9 i^{2}}{N^{2}}+2+\frac{6 i}{N}-5\right]
\end{gathered}
$$

Combine like terms

$$
=\lim _{N \rightarrow \infty} \frac{3}{N} \sum_{i=1}^{N}\left[\frac{9}{N^{2}} i^{2}+\frac{12}{N} i-2\right]
$$

Distribute the sum

$$
=\lim _{N \rightarrow \infty} \frac{3}{N}\left[\frac{9}{N^{2}} \sum_{i=1}^{N}\left(i^{2}\right)+\frac{12}{N} \sum_{i=1}^{N}(i)-\sum_{i=1}^{N}(2)\right]
$$

Use your rules $\quad=\lim _{N \rightarrow \infty} \frac{3}{N}\left[\frac{9}{N^{2}} \cdot \frac{N(N+1)(2 N+1)}{6}+\frac{12}{N} \cdot \frac{N(N+1)}{2}-2 N\right]$
Distribute

$$
=\lim _{N \rightarrow \infty}\left[\frac{27}{N^{3}} \cdot \frac{N(N+1)(2 N+1)}{6}+\frac{36}{N^{2}} \cdot \frac{N(N+1)}{2}-\frac{6 N}{N}\right]
$$

Algebra

Reorganize

$$
\begin{aligned}
& =\lim _{N \rightarrow \infty}\left[\frac{9(N+1)(2 N+1)}{2 N^{2}}+\frac{18(N+1)}{N}-6\right] \\
& =\lim _{N \rightarrow \infty}\left[\frac{9\left(2 N^{2}+3 N+1\right)}{2 N^{2}}+\frac{18(N+1)}{N}-6\right]
\end{aligned}
$$

Simplify $\quad=\lim _{N \rightarrow \infty}\left[9+\frac{27}{2 N}+\frac{9}{2 N^{2}}+18+\frac{18}{N}-6\right]$
Evaluate Limit

$$
=9+0+0+18+0-6
$$

$$
=21
$$

Theorem Midpoint Rule (pg. 268) A particular Riemann Sum
$\int_{a}^{b} f(x) d x \approx \sum_{i=1}^{N} f\left(\overline{x_{i}}\right) \Delta x=\Delta x\left[f\left(\overline{x_{1}}\right)+f\left(\overline{x_{2}}\right)+f\left(\overline{x_{3}}\right)+\ldots+f\left(\overline{x_{N}}\right)\right]$
where $\Delta x=\frac{b-a}{N}$ (a regularly spaced partition)
and $\overline{x_{i}}=\frac{1}{2}\left(x_{i-1}+x_{i}\right)$ which is the midpoint of $\left[x_{i-1}, x_{i}\right]$ any sub-interval

Example pg. 273 \#13) Use Mid Point Rule to approximate $\int_{0}^{1} \sin \left(x^{2}\right) d x$ with $N=5$.
So, you need to calculate $\sum_{i=1}^{5} f\left(\bar{x}_{i}\right) \Delta x$
$\Delta x=\frac{b-a}{N}=\frac{1-0}{N}=\frac{1-0}{5}=\frac{1}{5}$
Now you need all of the midpoints.

$$
\begin{aligned}
& \overline{x_{1}}=\frac{1}{2}\left(x_{0}+x_{1}\right)=\frac{1}{2}\left(0+\frac{1}{5}\right)=\frac{1}{2}\left(\frac{1}{5}\right)=\frac{1}{10}=0.1 \\
& \overline{x_{2}}=\frac{1}{2}\left(x_{1}+x_{2}\right)=\frac{1}{2}\left(\frac{1}{5}+\frac{2}{5}\right)=\frac{1}{2}\left(\frac{3}{5}\right)=\frac{3}{10}=0.3 \\
& \overline{x_{3}}=\frac{1}{2}\left(x_{2}+x_{3}\right)=\frac{1}{2}\left(\frac{2}{5}+\frac{3}{5}\right)=\frac{1}{2}\left(\frac{5}{5}\right)=\frac{5}{10}=0.5 \\
& \overline{x_{4}}=\frac{1}{2}\left(x_{3}+x_{4}\right)=\frac{1}{2}\left(\frac{3}{5}+\frac{4}{5}\right)=\frac{1}{2}\left(\frac{7}{5}\right)=\frac{7}{10}=0.7 \\
& \overline{x_{5}}=\frac{1}{2}\left(x_{4}+x_{5}\right)=\frac{1}{2}\left(\frac{4}{5}+\frac{5}{5}\right)=\frac{1}{2}\left(\frac{9}{5}\right)=\frac{9}{10}=0.9 \\
& A \approx \sum_{i=1}^{5} f\left(\overline{x_{i}}\right) \Delta x=\Delta x \sum_{i=1}^{5} f\left(\overline{x_{i}}\right) \\
& A \approx \frac{1}{5}\left(\sin \left(0.1^{2}\right)+\sin \left(0.3^{2}\right)+\sin \left(0.5^{2}\right)+\sin \left(0.7^{2}\right)+\sin \left(0.9^{2}\right)\right)
\end{aligned}
$$

Then smash into calculator to get $A \approx 0.3084$
Now, just handling the integral notation without all the summing (short-cut methods)

1. $\int_{a}^{b} f(x) d x=-\int_{b}^{a} f(x) d x$

No area under a single point
2. If $a=b$, then $\Delta x=0$, so $\int_{a}^{b} f(x) d x=0$
3. $\int_{a}^{b} c d x=c(b-a)$ where c is a constant
4. $\int_{a}^{b} c f(x) d x=c \int_{a}^{b} f(x) d x \quad$ constants move out
5. $\int_{a}^{b}(f(x)+g(x)) d x=\int_{a}^{b} f(x) d x+\int_{a}^{b} g(x) d x \quad$ splitting sums
6. $\int_{a}^{b}(f(x)-g(x)) d x=\int_{a}^{b} f(x) d x-\int_{a}^{b} g(x) d x \quad$ and differences

Sometimes, even if we just know these simple properties we can quickly evaluate an integral, or at least break it into smaller chunks.

Example $\int_{0}^{1}\left(5-4 \mathrm{x}^{3}\right) d x=\int_{0}^{1} 5 d x-4 \int_{0}^{1} x^{3} d x$
More Properties
7. $\int_{a}^{c} f(x) d x+\int_{c}^{b} f(x) d x=\int_{a}^{b} f(x) d x \quad$ Intervals

$$
[a, c]+[c, b]=[a, b]
$$

8. If $f(x) \geq 0$ on $x \in[a, b]$ then $\int_{a}^{b} f(x) d x \geq 0$ If you have a positive value function, you will have a positive valued area under the curve.
9. If $f(x) \geq g(x)$ on $x \in[a, b]$ then $\int_{a}^{b} f(x) d x \geq \int_{a}^{b} g(x) d x$ If f is always bigger then g, then the area under f is always bigger than the area under g.
10. If $m \leq f(x) \leq M$ on $x \in[a, b]$ then $m(b-a) \leq \int_{a}^{b} f(x) d x \leq M(b-a)$

Same as $\int_{a}^{b} m d x \leq \int_{a}^{b} f(x) d x \leq \int_{a}^{b} M d x$
(same as \#9, it's just now you are bounding with constants)

Example pg. 274 \#32) Evaluate the integral by interpreting it in terms of areas.

$$
\begin{aligned}
& \int_{-2}^{2} \sqrt{4-x^{2}} d x \quad \text { You want the area under the curve between }-2 \text { and }+2 \\
& f(x)=\sqrt{4-x^{2}} \\
& y=\sqrt{4-x^{2}} \\
& y^{2}=4-x^{2} \\
& x^{2}+y^{2}=4
\end{aligned} \quad \text { So, we have circle center at }(0,0) \text { with } R=2 .
$$

Recall: $\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}=R^{2}$
Center: $\left(x_{0}, y_{0}\right)$
radius: R

So, I need $1 / 2$ the area of this circle

$$
\begin{gathered}
A_{c}=\pi r^{2} \\
\frac{1}{2} A_{c}=\frac{1}{2} \pi r^{2} \\
=\frac{1}{2} \pi(2)^{2} \\
=\frac{1}{2} \pi 4 \\
=2 \pi
\end{gathered}
$$

Notation Exercise:
Example If $\int_{0}^{5} f(x) d x=24$ and $\int_{0}^{5} g(x) d x=3$, find $\int_{0}^{5}(2 f(x)-5 g(x)) d x$.

$$
\begin{aligned}
\int_{0}^{5}(2 f(x)-5 g(x)) d x & =2 \int_{0}^{5} f(x) d x-5 \int_{0}^{5} g(x) d x \\
= & 2(24)-5(3) \\
& =48-15 \\
& =33
\end{aligned}
$$

Find: $\int_{5}^{0} 4 g(x) d x$

$$
\int_{5}^{0} 4 g(x) d x=-4 \int_{0}^{5} g(x) d x=-4(3)=-12
$$

