
Section 5.2 The Definite Integral

As a reminder, in section 5.1 we talked about calculating the area under a curve by adding up the areas
of little rectangles, equally spaced, that we made by cutting up an interval into N equal pieces.  We

determined that the area could be estimated as a limit:

A � lim
N ��

�
i=1

N

f � xi
*�� x  on x � [a , b ]

where � x =
b	a

N
 and f � x i

*�  was the function value at left, right, or midpoints, x
i .

Now, we are going to be a bit more general in the sense that these rectangles no longer need to be

equally spaced.
So think of the x-line like this:

Now, each � x  is different: � x
i
= x

i
	 x

i	1

Example: � x
1
= x

1
	x

0

But our sum is still handled essentially the same way:

A � �
i=1

N

f � xi
*�� x

i
on x � [a , b ] = [x

0
, x

N
]  (no limit yet!)

Where � x
i
= x

i
	 x

i	1  and f � x i

*�  is the function evaluated at the left, right, or midpoint as 

necessary.

This particular version of calculating area is called the Riemann Sum.
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If f is a function defined on [a , b] , the definite integral of f  from a  to b is the number:



a

b

f �x� dx = lim
max� x �0 [�i=1

N

f �xi
*�� x

i ]
provided that this limit exists.  If it does exist, we say that f is integrable on  [a , b] .

Notation and Language:

Theorem: If f is continuous on [a , b] , or if f has only a finite number of jump discontinuities,

then f is integrable on [a , b] .  That means 

a

b

f �x� dx  exists.

Example: Write lim
N ��

�
i=1

N

x
i
sin �x i�� x

i
 on [0 , �]  as a definite integral.  (DO NOT SOLVE)

lim
N ��

�
i=1

N

x
i
sin �x i�� x

i
=


0

�

� x sin � x� � dx

Evaluating a Riemann Sum

Need to Know:

1. �
k=1

N

k =
N �N�1�

2

For Example: �
k=1

5

k = 1�2�3�4�5 = 15

Or: �
k=1

5

k =
5 �5�1�

2
=

5 �6�

2
=

30

2
= 15



2. �
k=1

N

k
2 =

N �N �1� �2N�1�

6

For Example: �
k=1

5

k
2 = 1

2�2
2�3

2�4
2�5

2 = 1�4�9�16�25 = 55

Or: �
k=1

5

k
2 =

5 �5�1 ��2
5�1�

6
=

5 �6� �11�

6
= 55

3. �
k=1

N

k
3 = � N �N�1 �

2 �
2

For Example: �
k=1

5

k
3 = 1

3�2
3�3

3�4
3�5

3 = 1�8�27�64�125 = 225

Or: �
k=1

5

k
3 = �5 �5�1�

2 �
2

= �5 �6�2 �
2

= 15
2 = 225

4. �
k=1

N

c = Nc

For Example: �
k=1

5

3 = 3�3�3�3�3 = 5 �3� = 15

5. �
k=1

N

c a
i
= c �

k=1

N

a
i

For Example: �
k=1

5

3 k = 3�1��3 �2 ��3 �3��3 �4��3 �5� = 3 �1�2�3�4�5� = 45

6. �
k=1

N

�ai
�b

i � = �
k=1

N

a
i
� �

k=1

N

b
i

7. �
k=1

N

�ai
	b

i � = �
k=1

N

a
i
	 �

k=1

N

b
i



Example pg. 273 #20) Use 

a

b

f �x� dx = lim
N �0 [�i=1

N

f � xi
*�� x

i]  to evaluate 

1

4

�x2�2 x	5 �dx

Think of f � x� = x
2�2 x	5  and [a , b] = [1 , 4]

Now, find � x =
b	a

N
=

4	1

N
=

3

N
(because we do not know N)

We need to generalize x
i  assuming an evenly space partition.  So: 

x
i
= a�i� x

x
i
= 1�i � 3

N �
At this point, we just stuff everything we know into the form:



a

b

f �x� dx = lim
N �0 [�i=1

N

f � xi

*�� x
i]

So: 

1

4

�x2�2 x	5 � dx = lim
N ��

�
i=1

N

�xi

2�2 x
i
	5�� x

= lim
N ��

�
i=1

N

{[�1� i � 3

N ��
2

�2 �1�i � 3

N ��	5 ]� 3

N �}
Expand = lim

N ��

3

N
�
i=1

N

[1� 6 i

N
�

9 i
2

N
2
�2�

6 i

N
	5 ]

Combine like terms = lim
N ��

3

N
�
i=1

N

[ 9

N
2

i
2�

12

N
i	2]

Distribute the sum = lim
N ��

3

N [ 9

N
2
�
i=1

N

�i2� �
12

N
�
i=1

N

� i� 	 �
i=1

N

�2� ]
Use your rules = lim

N ��

3

N [ 9

N
2



N �N�1� �2 N�1�

6
�

12

N



N �N�1�

2
	 2 N ]

Distribute = lim
N �� [ 27

N
3



N �N�1��2 N�1�

6
�

36

N
2



N �N�1�

2
	

6 N

N ]
Algebra = lim

N �� [ 9�N�1� �2 N�1�

2 N
2

�
18 �N�1�

N
	 6]

Reorganize = lim
N�� [ 9 �2 N

2�3 N �1�

2 N
2

�
18 �N�1�

N
	 6]



Simplify = lim
N �� [9 �

27

2 N
�

9

2 N
2
� 18 �

18

N
	 6]

Evaluate Limit = 9�0�0�18�0	6

= 21

Theorem Midpoint Rule (pg. 268)  A particular Riemann Sum



a

b

f �x� dx � �
i=1

N

f � xi �� x = � x [ f � x1� � f �x2 � � f �x3� � . . . � f �xN � ]

where � x =
b	a

N
 (a regularly spaced partition)

and x
i
=

1

2 �xi	1
�x

i�  which is the midpoint of [ xi	1
, x

i ]  any sub-interval

Example pg. 273 #13) Use Mid Point Rule to approximate 

0

1

sin �x2�dx  with N = 5.

So, you need to calculate �
i=1

5

f � xi �� x

� x =
b	a

N
=

1	0

N
=

1	0

5
=

1

5

Now you need all of the midpoints.



x
1

=
1

2
�x0

�x
1� =

1

2 �0� 1

5 � =
1

2 �1

5 � =
1

10
= 0.1

x
2

=
1

2
� x

1
�x

2� =
1

2 � 1

5
�

2

5 � =
1

2 �3

5 � =
3

10
= 0.3

x
3

=
1

2 �x2
�x

3� =
1

2 � 2

5
�

3

5 � =
1

2 �5

5 � =
5

10
= 0.5

x
4

=
1

2 �x3
�x

4� =
1

2 �3

5
�

4

5 � =
1

2 �7

5 � =
7

10
= 0.7

x
5

=
1

2 �x4
�x

5� =
1

2 � 4

5
�

5

5 � =
1

2 �9

5 � =
9

10
= 0.9

A � �
i=1

5

f �xi �� x = � x �
i=1

5

f �x i �

A �
1

5
�sin �0.1

2 ��sin �0.3
2 ��sin �0.5

2 ��sin �0.7
2 ��sin �0.9

2 � �

Then smash into calculator to get A � 0.3084

Now, just handling the integral notation without all the summing (short-cut methods)

1. 

a

b

f �x� dx = 	

b

a

f �x �dx

No area under a single point

2. If a = b, then � x  = 0, so 

a

b

f �x� dx = 0

3. 

a

b

c dx = c �b	a� where c is a constant

4. 

a

b

c f �x� dx = c

a

b

f � x�dx constants move out

5. 

a

b

� f �x��g �x � � dx =

a

b

f �x �dx � 

a

b

g �x� dx splitting sums



6. 

a

b

� f �x�	g �x � � dx =

a

b

f �x �dx 	 

a

b

g �x�dx and differences

Sometimes, even if we just know these simple properties we can quickly evaluate an integral, or at least

break it into smaller chunks.

Example 

0

1

�5	4x
3�dx =


0

1

5 dx 	 4

0

1

x
3

dx

More Properties

7. 

a

c

f �x� dx �

c

b

f � x�dx =

a

b

f �x �dx Intervals

[a , c] + [c , b] = [a , b]

8. If f � x��0  on x � [a , b ]  then 

a

b

f �x� dx � 0

If you have a positive value function, you will have a positive valued area under the curve.

9. If f � x��g � x�   on x � [a , b ]  then 

a

b

f �x� dx �

a

b

g � x�dx

If f is always bigger then g, then the area under f is always bigger than the area under g.

10. If m � f � x� � M  on x � [a , b ]  then m �b	a� �

a

b

f �x �dx � M �b	a�

Same as 

a

b

mdx �

a

b

f �x �dx �

a

b

M dx  

(same as #9, it's just now you are bounding with constants)



Example pg. 274 #32) Evaluate the integral by interpreting it in terms of areas.



	2

2

�4	x2 dx You want the area under the curve between -2 and +2

f �x � = �4	x
2

y = �4	x
2

y
2 = 4	x

2

x
2
� y

2
= 4

 So, we have  circle center at (0, 0) with R = 2.

Recall: �x	x
0�

2�� y	 y
0 �

2 = R
2

Center: �x0
, y

0�
radius: R

So, I need ½ the area of this circle

A
c
= � r

2

1

2
A

c
=

1

2
� r

2

=
1

2
��2�2

=
1

2
� 4

= 2�

Notation Exercise:

Example If 

0

5

f �x� dx = 24  and 

0

5

g �x �dx = 3 , find 

0

5

�2 f �x �	5 g �x �� dx .



0

5

�2 f �x �	5 g �x �� dx = 2

0

5

f �x �dx 	 5

0

5

g � x�dx

= 2�24 �	5 �3�

= 48	15

= 33

Find: 

5

0

4 g � x�dx



5

0

4 g �x�dx =	4

0

5

g� x�dx = 	4 �3 � =	12


