Section 4.7 Anti-Derivatives

Essentially, given a derivative, we want to find the function that produced it (you might want to think of this as doing derivatives backwards).

Definition A function F is called an anti-derivative of f on an interval I if $F^{\prime}(x)=f(x)$ for all x in I.

Are anti-derivatives unique? NO
Think of $f(x)=2 \mathrm{x}$
What function, $F(x)$, did this come from?

$$
F^{\prime}(x)=2 x \Rightarrow F(x)=x^{2}
$$

i.e. OR $F(x)=x^{2}+4$

OR $F(x)=x^{2}-7$
There are of course countless other $F(x)$. Notice, however, that these functions F are all similar -their differences only being a constant.

Theorem If F is an anti-derivative of f on an interval I, then the most general anti-derivative of f on I is

$$
F(x)+c
$$

where c is an arbitrary constant.
In general, then, how do we puzzle out anti-derivatives? The come directly from the derivative rules that we already know!

Example Derivative Rule

$$
\begin{array}{cc}
\text { function } & \text { derivative } \\
x^{n} & n x^{n-1}
\end{array}
$$

Now we go backwards...
Anti-derivative Rules
\(\left.\begin{array}{lll}anti-derivative \& \& derivative

\frac{1}{n+1} x^{n+1} \& \leftarrow \& x^{n} \quad(n \neq 1)\end{array}\right]\)| $\frac{1}{x}$ | | |
| :---: | :---: | :---: |
| $\ln \|x\|$ | \leftarrow | e^{x} |
| e^{x} | \leftarrow | $\sin x$ |
| $-\cos x$ | \leftarrow | $\cos x$ |
| $\sin x$ | \leftarrow | $\sec x \tan x$ |
| $\sec x$ | \leftarrow | $\sec ^{2} x$ |
| $\tan x$ | | |

Likewise, all of the general notions of sums and differences are maintained.

anti-derivative		derivative
$c f(x)$	\leftarrow	$c F(x)$
$f(x)+g(x)$	\leftarrow	$F(x)+G(x)$

Example Find a general anti-derivative for:
pg. 246 \#2) $\quad f(x)=1-x^{3}+12 x^{5}$

$$
\begin{gathered}
F(x)=x-\frac{1}{4} x^{4}+12\left(\frac{1}{6}\right) x^{6}+c \\
F(x)=x-\frac{1}{4} x^{4}+2 x^{6}+c
\end{gathered}
$$

Check: $F^{\prime}(x)=1-\frac{1}{4}\left(4 x^{3}\right)+2\left(6 x^{5}\right)+0$

$$
F^{\prime}(x)=1-x^{3}+12 x^{5}
$$

Example Find a general anti-derivative for:
pg. 246 \#6)

$$
f(x)=\sqrt[4]{x^{3}}+\sqrt[3]{x^{4}}
$$

$f(x)=x^{\frac{3}{4}}+x^{\frac{4}{3}}$ simplify notation

$$
F(x)=\frac{1}{\frac{7}{4}} x^{\frac{7}{4}}+\frac{1}{\frac{7}{3}} x^{\frac{7}{3}}+c
$$

$$
F(x)=\frac{4}{7} \sqrt[4]{x^{7}}+\frac{3}{7} \sqrt[3]{x^{7}}+c
$$

$$
F(x)=\frac{4}{7} x \sqrt[4]{x^{3}}+\frac{3}{7} x^{2} \sqrt[3]{x}+c
$$

Check: $F^{\prime}(x)=\frac{4}{7}\left(\frac{7}{4}\right) x^{\frac{3}{4}}+\frac{3}{7}\left(\frac{7}{3}\right) x^{\frac{4}{3}}+0$

$$
F^{\prime}(x)=x^{\frac{3}{4}}+x^{\frac{4}{3}}=f(x)
$$

Example Find the anti-derivative F of f that satisfies the given condition.

$$
f(x)=4-3\left(1+x^{2}\right)^{-1} \quad F(1)=0
$$

pg. 246 \# 14)

$$
f(x)=4-\frac{3}{1+x^{2}}
$$

$F(x)=4 x-3 \tan ^{-1}(x)+c \quad$ note: $\tan ^{-1}(x)=\operatorname{atan}(x)=\arctan (x) ; \tan ^{-1}(x) \neq \frac{1}{\tan (x)}$
So, we have the anti-derivative, but we now must satisfy the condition $F(1)=0$

$$
\begin{aligned}
F(1)= & 4(1)-3 \tan ^{-1}(1)+c=0 \\
& 4-3\left(\frac{\pi}{4}\right)+c=0 \\
& \frac{16}{4}-\frac{3 \pi}{4}=-c \\
& \frac{16-3 \pi}{4}=-c \\
& \Rightarrow c=\frac{3 \pi-16}{4}
\end{aligned}
$$

So: $F(x)=4 x-3 \tan ^{-1}(x)+\frac{3 \pi-16}{4}$
** In this case, then, our constant c is very specific to the problem.
Check: $F^{\prime}(x)=4-3\left(\frac{1}{1+x^{2}}\right)+0$

$$
F^{\prime}(x)=4-\frac{3}{1+x^{2}}=f(x)
$$

Example Find f.

pg. 246 \#23) $f^{\prime \prime}(x)=24 x^{2}+2 x+10 \quad f(1)=5 \quad f^{\prime}(1)=-3$

$$
\begin{gathered}
f^{\prime}(x)=24\left(\frac{1}{3}\right) x^{3}+2\left(\frac{1}{2}\right) x^{2}+10 x+c \\
f^{\prime}(x)=8 x^{3}+x^{2}+10 x+c
\end{gathered}
$$

apply condition $f^{\prime}(1)=8(1)^{3}+(1)^{2}+10(1)+c=-3$

$$
8+1+10+3=-c
$$

$$
-22=c
$$

$$
\begin{gathered}
f^{\prime}(x)=8 x^{3}+x^{2}+10 x-22 \\
f(x)=8\left(\frac{1}{4}\right)+\left(\frac{1}{3}\right) x^{3}+10\left(\frac{1}{2}\right) x^{2}-22 x+d \\
f(x)=2 x^{4}+\frac{1}{3} x^{3}+5 x^{2}-22 x+d
\end{gathered}
$$

apply condition: $f(1)=2(1)^{4}+\frac{1}{3}(1)^{3}+5(1)^{2}-22(1)+d=5$

$$
\begin{gathered}
2+\frac{1}{3}+5-22-5=-d \\
\frac{1}{3}-20=-d \\
\frac{-59}{3}=-d \\
d=\frac{59}{3}
\end{gathered}
$$

$$
\begin{aligned}
& f(x)=2 x^{4}+\frac{1}{3} x^{3}+5 x^{2}-22 x+\frac{59}{3} \\
& f(1)=2(1)^{4}+\frac{1}{3}(1)^{3}+5(1)^{2}-22(1)+\frac{59}{3}=5
\end{aligned}
$$

Check: $\quad f^{\prime}(x)=8 x^{3}+x^{2}+10 x-22$

$$
\begin{gathered}
f^{\prime}(1)=8(1)^{3}+(1)^{2}+10(1)-22=-3 \\
f^{\prime \prime}(x)=24 x^{2}+2 x+10
\end{gathered}
$$

Example: A particle is moving with the given data. Find the position of the particle.

$$
\begin{aligned}
& v(t)=1.5 \sqrt{t} \quad s(4)=10 \\
& v(t)=\frac{3}{2} t^{\frac{1}{2}} \\
& s(t)=\frac{3}{2}\left(\frac{1}{\frac{3}{2}}\right)^{\frac{3}{2}}+c \\
& s(t)=\frac{3}{2}\left(\frac{2}{3}\right) t^{\frac{3}{2}}+c \\
& s(t)=t^{\frac{3}{2}}+c
\end{aligned}
$$

apply condition: $s(4)=4^{\frac{3}{2}}+c=0$

$$
\begin{gathered}
s(4)=\sqrt{64}+c=10 \\
8+c=10 \quad \Rightarrow \quad c=2
\end{gathered}
$$

So: $\quad s(t)=t^{\frac{3}{2}}+2$

