Section 3.7

This section is dedicated to figuring out limits that give us answers like $\frac{0}{0}$ or $\frac{\infty}{\infty}$ which make no mathematical sense. (indeterminate forms)

Theorem: L'Hopital's Rule (1 $1^{\text {st }}$ Form)
Suppose $f(a)=g(a)=0$ and that $f^{\prime}(a)$ and $g^{\prime}(a)$ exist and that $g^{\prime}(a) \neq 0$.
Then $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\frac{f^{\prime}(a)}{g^{\prime}(a)}$
Why does this work? By definition of a derivative

$$
\begin{aligned}
& \frac{f^{\prime}(a)}{g^{\prime}(a)}=\frac{\lim _{x \rightarrow a} \frac{f(x)-f(x)}{x-a}}{\lim _{x \rightarrow a} \frac{g(x)-g(x)}{x-a}}=\lim _{x \rightarrow a} \frac{\frac{f(x)-f(a)}{x-a}}{\frac{g(x)-g(a)}{x-a}}=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{g(x)-g(a)} \text { but } f(a)=g(a)=0 \\
& =\lim _{x \rightarrow a} \frac{f(x)}{g(x)} \\
& \text { Hence } \lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\frac{f^{\prime}(a)}{g^{\prime}(a)}
\end{aligned}
$$

How might I use this?
Example: $\lim _{x \rightarrow 0} \frac{3 x-\sin x}{x}=\frac{3(0)-\sin (0)}{0}=\frac{0}{0}$ indeterminate
Old Way:

$$
=\lim _{x \rightarrow 0} \frac{3 x}{x}-\lim _{x \rightarrow 0} \frac{\sin x}{x}=\lim _{x \rightarrow 0} 3-1=3-1=2
$$

Apply L'Hopital's Rule:

$$
=\left.\frac{3-\cos x}{1}\right|_{x=0}=\frac{3-\cos (0)}{1}=3-1=2
$$

Example: $\lim _{x \rightarrow 0} \frac{\sqrt{1+x}-1}{x}=\frac{\sqrt{1+0}-1}{0}=\frac{0}{0}$ indeterminate
Old Way:

$$
=\lim _{x \rightarrow 0} \frac{(\sqrt{1+x}-1)(\sqrt{1+x}+1)}{x(\sqrt{1+x}+1)}=\lim _{x \rightarrow 0} \frac{1+x-1}{x(\sqrt{1+x}+1)}=\lim _{x \rightarrow 0} \frac{1}{\sqrt{1+x}+1}=\frac{1}{1+1}=\frac{1}{2}
$$

Apply L'Hopital's Rule:

$$
=\left.\frac{\frac{1}{2}(1+x)^{-\frac{1}{2}}(1)-0}{1}\right|_{x=0}=\frac{1}{2} \cdot \frac{1}{\sqrt{1+0}}=\frac{1}{2}
$$

Example: $\lim _{x \rightarrow 0} \frac{x-\sin x}{x^{3}}$

Apply L'Hopital's Rule:

$$
=\left.\frac{1-\cos x}{3 x^{2}}\right|_{x=0}=\frac{1-1}{0}=\frac{0}{0} \text { uh-oh, it is still indeterminate }
$$

What to do? Apply L'Hopital's Rule again:

$$
=\left.\frac{0+\sin x}{6 \mathrm{x}}\right|_{x=0}=\frac{0}{0}
$$

And, again:

$$
=\left.\frac{\cos x}{6}\right|_{x=0}=\frac{1}{6} \quad \text { wow... }
$$

L'Hopital's Rule ($\mathbf{2}^{\text {nd }}$ form)

Suppose $f(a)=g(a)=0$ and that f and g are differentiable in an area containing a. Also,
suppose $g^{\prime}(x) \neq 0$ if $x \neq a$.
Then: $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}$
Example: $\lim _{x \rightarrow 0} \frac{\sqrt{1+x}-1-\frac{x}{2}}{x^{2}}$
Apply L'Hopital's Rule:

$$
=\frac{\sqrt{1+0}-1-\frac{0}{2}}{0}=\frac{0}{0} \quad \mathrm{Bad}
$$

Apply L'Hopital's Rule:

$$
=\lim _{x \rightarrow 0} \frac{\frac{1}{2}(1+x)^{-\frac{1}{2}}-0-\frac{1}{2}}{2 x}=\frac{\frac{1}{2}(1)^{-\frac{1}{2}}-\frac{1}{2}}{2(0)}=\frac{0}{0} \quad \mathrm{Bad}
$$

Apply L'Hopital's Rule:

$$
=\lim _{x \rightarrow 0} \frac{\frac{1}{2}\left(-\frac{1}{2}\right)(1+x)^{-\frac{3}{2}}}{2}=\frac{-\frac{1}{4}(1+0)^{-\frac{3}{2}}}{2}=\frac{-\frac{1}{4}}{2}=-\frac{1}{8} \quad \text { OK }
$$

