Section 4.2 The Mean Value Theorem / Rolle's Theorem

Rolle's Theorem: (You must be able to state this)
Let f be a function that satisfies the following three hypotheses:

1. f is continuous on the closer interval $[a, b]$
2. f is differentiable on the open interval (a, b)
3. $f(a)=f(b)$

Then there is a number c in (a, b) such that $f^{\prime}(c)=0$
Cases:

1. Constant Function $-c$ is any number between a and b

2. A Single Relative Maximum

3. A Single Relative Minimum

4. Multiple Relative Maximums and Minimums

Example 6) Let $f(x)=(x-1)^{-2}$. Show that $f(0)=f(2)$ but there is no number c in $(0,2)$ such that $f^{\prime}(c)=0$. Why doesn't this contradict Rolle's Theorem?
pt $\quad f(x)=\frac{1}{(x-1)^{2}}$

$$
\begin{equation*}
f(0)=\frac{1}{1}=1 \quad \text { So, } f(0)=f(2)=1 \tag{0}
\end{equation*}
$$

$2 \quad f(2)=\frac{1}{1}=1$
$f^{\prime}(x)=(-2)(x-1)^{-3}(1)=\frac{-2}{(x-1)^{3}} \quad$ So, there is a critical point at $c=1(f(c)=$ DNE $)$
Check $1 f(1)=\frac{1}{0}=$ undefined not a max or min?? What does this mean?

Rolle's Theorem fails because there is a vertical asymptote at $x=1$. This means that f is NOT continuous on our interval $(0,2)$ and that Rolle's Theorem does not apply.

Mean Value Theorem (You must be able to state this)
Let f be a function that satisfies the following hypotheses:

1. f is continuous on the closed interval $[a, b]$
2. f is differentiable on the open interval (a, b)

Then there is a number c in (a, b) such that

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a} \text { or rearranged, } f(b)-f(a)=f^{\prime}(c)(b-a)
$$

Remember: $m=\frac{f(b)-f(a)}{b-a}$
Okay, so what does $f^{\prime}(c)=m$ mean?
Only that I can slide my slope line over my curve and find points along f that have the same slope. Those points are c. And there may be more than one!

Example Find all the numbers c that satisfy the Mean Value Theorem for:
$f(x)=x^{3}+x-1 \quad$ on $[0,2]$
$1^{\text {st }}$ is f continuous on [0, 2]? Yes, it is a polynomial
$2^{\text {nd }}$ is f differentiable on (0,2)? Yes, it is a polynomial

1. $f^{\prime}(x)=3 x^{2}+1 \Rightarrow f^{\prime}(c)=3 c^{2}+1$
2. Find

$$
\begin{array}{lcll}
\text { pt } & f(x)=x^{3}+x-1 & \\
a=0 & 0^{3}+0-1=-1 & \Rightarrow & f(0)=-1=f(a) \\
b=2 & 2^{3}+2-1=9 & \Rightarrow & f(1)=9=f(b)
\end{array}
$$

3. Write out Theorem
$f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}$
4. Put in what you know

$$
3 c^{2}+1=\frac{9-(-1)}{2-0}=\frac{10}{2}=5
$$

5. Simplify

$$
\begin{gathered}
3 c^{2}+1=5 \\
3 c^{2}=4 \\
c^{2}=\frac{4}{3} \\
c= \pm \frac{2}{\sqrt{3}}
\end{gathered}
$$

Only $\frac{+2}{\sqrt{3}}$ is in the interval $[0,2]$
So, $c=\frac{2}{\sqrt{3}}$

