Section 4.1 Max and Min (Optimization Problems)

Definition Absolute maximum - "Biggest Value" f has an absolute maximum if $f(c) \geq f(x) \quad \forall x \in D$

Definition Absolute minimum - "Smallest Value" f has an absolute minimum if $f(c) \leq f(x) \quad \forall x \in D$

NOTE: Both are called Extrema
Definition Local maximum - "Biggest" on an interval f has a local maximum at c if $f(c) \geq f(x)$ when x is near c.

Definition Local minimum - "Smallest" on an interval f has a local minimum at c if $f(c) \leq f(x)$ when x is near c.

Examples:

Open or partially close interval

Theorem If f is continuous on a close interval $[a, b]$, then f attains an absolute maximum value $f(c)$ and an absolute minimum value $f(d)$ at some numbers c and d in $[a, b]$.

No Abs. Max or Min
What do you notice about where the relative maximum and minimum occur?

- Hump or a valley
- Particular point where slope changes from + to - or - to +
- Local tangent line is horizontal

KEY: All of these things indicate that at c (where the local max or min occurs) that $f^{\prime}(c)=0$
This is called Fermat's Theorem:
If f has a local maximum or minimum at c, and if $f^{\prime}(c)$ exists, then $f^{\prime}(c)=0$
In fact, we give these c a special name.
Definition A critical number of a function f is a number c in the domain of f such that either $f^{\prime}(c)=0$ or $f^{\prime}(c)$ does not exist.

Example 25) Find the critical numbers of $f(x)=x^{3}+3 x^{2}-24 x$

1. Find derivative and simplify

$$
f^{\prime}(x)=3 x^{2}+6 x-24
$$

2. Set $f^{\prime}(x)=0$

$$
3(x+4)(x-2)=0
$$

3. Solve

$$
\begin{array}{cc}
x+4=0 & x-2=0 \\
x=-4 & x=2
\end{array}
$$

Critical Numbers: $\{-4,2\}$
Example 43) Find the absolute maximum and minimum on $[-1,2]$ for $f(t)=t \sqrt{4-t^{2}}$.

1. Find derivative and simplify

$$
\begin{gathered}
f^{\prime}(t)=t\left(\frac{1}{z}\right)\left(4-t^{2}\right)^{-\frac{1}{2}}(-z t)+\left(4-t^{2}\right)^{\frac{1}{2}} \\
=-\frac{t^{2}}{\left(4-t^{2}\right)^{\frac{1}{2}}}+\left(4-t^{2}\right)^{\frac{1}{2}} \\
=\frac{-t^{2}+4-t^{2}}{\left(4-t^{2}\right)^{\frac{1}{2}}} \\
f^{\prime}(t)=\frac{4-2 t^{2}}{\left(4-t^{2}\right)^{\frac{1}{2}}}
\end{gathered}
$$

2. Find critical points

$$
\begin{array}{ccc}
& 4-t^{2}=0 & \\
\text { Set } f^{\prime}(t)=0 \quad & -2 t^{2}=-4 & \text { numerator }=0 \\
t^{2}=2 & \\
t= \pm \sqrt{2} & \\
& & \left(4-t^{2}\right)^{\frac{1}{2}}=0 \\
4-t^{2}=0 & \text { denominator }=0 \\
\text { Set } f^{\prime}(t)=\text { DNE } \quad \Rightarrow & t= \pm 2 & \\
& &
\end{array}
$$

3. Which critical points are inside our interval? $[-1,2]$

Only $c=\{-\sqrt{2},+\sqrt{2}, 2\}$
4. Check $f(c)$ at all critical points and endpoints.

$$
\begin{array}{cc}
\text { Points } & f(t)=t \sqrt{4-t^{2}} \\
-1 & (-1)(4-1)^{\frac{1}{2}}=-\sqrt{3} \\
-\sqrt{2} & (-\sqrt{2})(4-2)^{\frac{1}{2}}=-\sqrt{2} \sqrt{2}=-2 \leftarrow \text { smallest value } \\
\sqrt{2} & (\sqrt{2})(4-2)^{\frac{1}{2}}=\sqrt{2} \sqrt{2}=2 \leftarrow \text { largest value } \\
2 & (2)(4-4)^{\frac{1}{2}}=0
\end{array}
$$

5. Abs maximum at $x=\sqrt{2}, f(\sqrt{2})=2$

Abs minimum at $x=-\sqrt{2}, f(-\sqrt{2})=-2$
Example 55) Between $0^{\circ} \mathrm{C}$ and $30^{\circ} \mathrm{C}$, the volume $V\left(\right.$ in $\left.\mathrm{cm}^{3}\right)$ of 1 kg of $\mathrm{H}_{2} 0$ at a temperature T is given by:

$$
V(T)=999.87-0.06426 T+0.0085043 T^{2}-0.0000679 T^{3}
$$

*NOTE, it may be easier to allow the form to be

$$
V(T)=a-b T+c T^{2}-d T^{3}
$$

where $a=999.87, b=0.06426, c=0.0085043, d=0.0000679$ and substitute the values for a, b, c, and d in the end.

Find T with maximum density. (i.e. use smallest Volume)

$$
\begin{aligned}
& \rho=\text { density }=\frac{\text { mass }}{\text { volume }}=\frac{\mathrm{g}}{\mathrm{~cm}^{3}} \text { to make } \rho \text { big, } V \text { must be small. } \\
& V^{\prime}(T)=-0.06426+2(0.0085043) T-3(0.0000679) T^{2} \\
& V^{\prime}(T)=-0.06426+0.01700860 T-0.00020370 T^{2}
\end{aligned}
$$

$V^{\prime}(T)=0 \quad$ Use Quadratic Formula

$$
\begin{gathered}
T=\frac{-0.01700860 \pm \sqrt{(0.01700860)^{2}-4(-0.00020370)(-0.06426)}}{2(-0.00020370)} \\
T=\frac{-0.01700860 \pm \sqrt{0.00028929-0.00005236}}{-0.00052740} \\
T=\frac{-0.01700860 \pm 0.01539253}{-0.00052740}
\end{gathered}
$$

$T=3.9665{ }^{\circ} \mathrm{C}$ or $79.5318{ }^{\circ} \mathrm{C}$ (Note: $79.5318{ }^{\circ} \mathrm{C}$ is outside given interval)

$$
\begin{gathered}
\rho(V)=\frac{1 \mathrm{~kg}}{V}=\frac{1000 \mathrm{~g}}{V} \\
\rho(0)=\frac{1000}{V(0)}=1.00013 \frac{\mathrm{~g}}{\mathrm{~cm}^{3}} \\
\rho(3.9665)=\frac{1000}{V(3.9665)}=1.00026 \frac{\mathrm{~g}}{\mathrm{~cm}^{3}} \\
\rho(30)=\frac{1000}{V(30)}=0.99625 \frac{\mathrm{~g}}{\mathrm{~cm}^{3}}
\end{gathered}
$$

