Section 2.2 The Derivative as a Function

Last time we looked at the derivative of a function at a particular value *a* and we evaluated:

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

Now, let's just think of *a* as being variable (i.e. any number) say *x*.

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Now, f'(x) is the derivative of f at any x. But the math works the same way.

Example: Given $f(x) = \sqrt{x+1}$ find f'(x) using the limit definition.

$$f(x+h) = \sqrt{x+h+1}$$

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{\sqrt{x+h+1} - \sqrt{x+1}}{h}$$
rationalize:
$$\lim_{h \to 0} \frac{\sqrt{x+h+1} - \sqrt{x+1}}{h} \cdot \frac{\sqrt{x+h+1} + \sqrt{x+1}}{\sqrt{x+h+1} + \sqrt{x+1}}$$
simplify:
$$\lim_{h \to 0} \frac{(x+h+1) - (x+1)}{h(\sqrt{x+h+1} + \sqrt{x+1})}$$
cancel:
$$\lim_{h \to 0} \frac{h}{h(\sqrt{x+h+1} + \sqrt{x+1})}$$

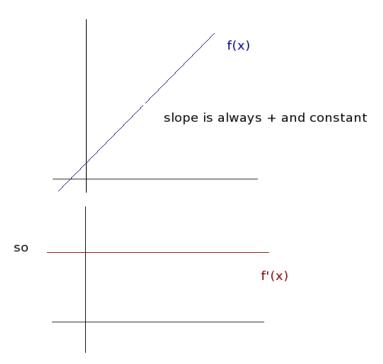
substitute in *h*=0:
$$\frac{1}{\sqrt{x+1} + \sqrt{x+1}} = \frac{1}{2\sqrt{x+1}} = f'(x)$$

Another important thing we need to be able to do is estimate derivatives graphically (without knowing any equations, formulae, or functions).

Example: How might the derivative look? Use the nature of slope and recall derivatives represent instantaneous slopes. What slopes can we draw from f(x)?



What about?



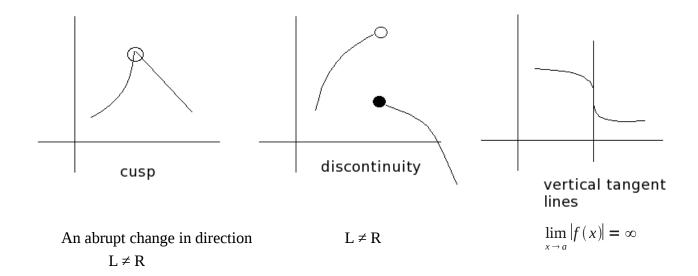
A word about notation. All of these things mean the same thing:

$$f'(x) = y' = \frac{dy}{dx} = \frac{df}{dx} = \frac{d}{dx}[f(x)]$$

Definition: A function *f* is differentiable at *a* if *f* ′ (*a*) exists.

A function f is differentiable on an open interval (a, b) if it is differentiable at every number in the interval.

When will a function not be differentiable?



Theorem: If *f* is differentiable at *a*, then *f* is continuous at *a*. (Note, however, that continuity does <u>not</u> guarantee differentiability)

<u>Derivatives are fun</u> because they describe new functions. That means derivatives can have derivatives and their derivatives can have derivatives and so on.

f(x)	
f'(x)	1 st derivative
$f^{\prime\prime}(x)$	2 nd derivative
$f^{\prime\prime\prime}(x)$	3 rd derivative
$f^{(4)}(x)$	4 th derivative

Because we know how to associate derivatives with units, each level of differentiation can be related back to a physical construct or meaning.

Remember:	s(t)	[m]
	v(t) = s'(t)	[m/s]
	a(t) = v'(t) = s''(t)	$[m/s^2]$