Section 2.2 The Derivative as a Function

Last time we looked at the derivative of a function at a particular value a and we evaluated:

$$
f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
$$

Now, let's just think of a as being variable (i.e. any number) say x.

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

Now, $f^{\prime}(x)$ is the derivative of f at any x. But the math works the same way.
Example: Given $f(x)=\sqrt{x+1}$ find $f^{\prime}(x)$ using the limit definition.

$$
\begin{aligned}
& f(x+h)=\sqrt{x+h+1} \\
& f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{\sqrt{x+h+1}-\sqrt{x+1}}{h} \\
& \text { rationalize: } \lim _{h \rightarrow 0} \frac{\sqrt{x+h+1}-\sqrt{x+1}}{h} \cdot \frac{\sqrt{x+h+1}+\sqrt{x+1}}{\sqrt{x+h+1}+\sqrt{x+1}} \\
& \text { simplify: } \lim _{h \rightarrow 0} \frac{(x+h+1)-(x+1)}{h(\sqrt{x+h+1}+\sqrt{x+1})} \\
& \text { cancel: } \lim _{h \rightarrow 0} \frac{h}{h(\sqrt{x+h+1}+\sqrt{x+1})}
\end{aligned}
$$

substitute in $h=0: \quad \frac{1}{\sqrt{x+1}+\sqrt{x+1}}=\frac{1}{2 \sqrt{x+1}}=f^{\prime}(x)$
Another important thing we need to be able to do is estimate derivatives graphically (without knowing any equations, formulae, or functions).

Example: How might the derivative look? Use the nature of slope and recall derivatives represent instantaneous slopes. What slopes can we draw from $\mathrm{f}(\mathrm{x})$?

What about?

A word about notation. All of these things mean the same thing:

$$
f^{\prime}(x)=y^{\prime}=\frac{d y}{d x}=\frac{d f}{d x}=\frac{d}{d x}(f(x))
$$

Definition: A function f is differentiable at a if $f^{\prime}(a)$ exists.
A function f is differentiable on an open interval (a, b) if it is differentiable at every number in the interval.

When will a function not be differentiable?

Theorem: If f is differentiable at a, then f is continuous at a.
(Note, however, that continuity does not guarantee differentiability)
Derivatives are fun because they describe new functions. That means derivatives can have derivatives and their derivatives can have derivatives and so on.

$$
\begin{array}{ll}
f(x) & \\
f^{\prime}(x) & 1^{\text {st }} \text { derivative } \\
f^{\prime \prime}(x) & 2^{\text {nd }} \text { derivative } \\
f^{\prime \prime}(x) & 3^{\text {rd }} \text { derivative } \\
f^{(4)}(x) & 4^{\text {th }} \text { derivative }
\end{array}
$$

Because we know how to associate derivatives with units, each level of differentiation can be related back to a physical construct or meaning.

$$
\begin{array}{lll}
\text { Remember: } & s(t) & {[\mathrm{m}]} \\
& v(t)=s^{\prime}(t) & {[\mathrm{m} / \mathrm{s}]} \\
& a(t)=v^{\prime}(t)=s^{\prime \prime}(t) & {\left[\mathrm{m} / \mathrm{s}^{2}\right]}
\end{array}
$$

