Section 1.5 Continuity

We've actually already defined what it means for a function to be continuous when we started talking about limits.

Definition: A function, *f*, is continuous at a number if: $\lim_{x \to a} f(x) = f(a)$

Notice, that this definition means:

- 1. f(a) is defined (*a* is in the domain & f(a) = value)
- 2. $\lim_{x \to a} f(x)$ exists
- 3. that the limit at *a* equals function value at *a*

*BUT, DON'T EVER FORGET: limits and function values are not the same thing!

Alternatively, what does it mean for a function to be discontinuous at *a*? $\lim_{x \to a} f(x) \neq f(a)$

What does that mean? What could cause that?

Holes:	$\lim_{x \to a} f(x) = value$	but	<i>f(a)</i> is undefined
\sim			
Jumps	$\lim_{x \to a} = \text{DNE}$	but	<i>f(a)</i> = value
0 ●			
A	lim = DNE	d	f(z) is undefined
Asymptotes	$x \to a$	and	<i>f(a)</i> is undefined
\sim			

How do we tell what kind of discontinuity we might have in a function? Using limit relationships.

Example:
$$f(x) = \frac{x^2 - x - 12}{x + 3}$$

We can look at this denominator x + 3 = 0 and set it to zero.

That means we have a disc at x = -3. But, what kind? Evaluate the limit there:

$$\lim_{x \to 3} \frac{x^2 - x - 12}{x + 3} = \lim_{x \to 3} \frac{(x - 4)(x + 3)}{(x + 3)} = -3 - 4 = -7$$

So,
$$\lim_{x \to a} f(a) = \text{value} \text{, but } f(a) \text{ is undefined.}$$

Hence, a HOLE (terminology, Removable Discontinuity)

Example:
$$f(x) = \frac{x^2 - x}{x^2 - 1}$$

Look at denominator:

$$(x^{2}-1) = 0$$

 $(x+1)(x-1) = 0$
 $x = -1$ $x = 1$

Discontinuity at x = -1 and x = 1, but what kind?

$$\lim_{x \to 1} \frac{x^2 - x}{x^2 - 1} = \lim_{x \to 1} \frac{x (x - 1)}{(x - 1) (x + 1)} = \lim_{x \to 1} \frac{x}{x + 1} = \frac{1}{2}$$

So, the limit has a value, but the function does not. This is a HOLE.

$$\lim_{x \to -1} \frac{x^2 - x}{x^2 - 1} = \lim_{x \to -1} \frac{x (x - 1)}{(x - 1) (x + 1)} = \lim_{x \to -1} \frac{x}{x + 1} = \text{DNE}$$

Nothing can be done. So, the limit does not exists and the function does not exist. This means x = -1 is an asymptote.

Example: $f(x) = \begin{cases} x+3 & x<0\\ 2x^2 & 0 \le x < 1\\ 2 & x > 1 \end{cases}$

Definition: Continuous from the right $\lim_{x \to a^*} f(x) = f(a)$

Continuous from the left $\lim_{x \to a^-} f(x) = f(a)$

So, our last example was continuous from the right.

Definition: Continuous on an interval

Continuous from left to right but maybe not end points.

Continuous on (a , b) Continuous on (a , b] Not continuous on [a , b) or [a , b]

Not continuous on any form of (a, b), [a, b]

Theorem: Manipulating Continuous Functions: If f is continuous and g is continuous at a and c = *constant*, the following are also continuous at a.

> 1. f + g2. f - g3. $c^* f \text{ or } c^* g$ 4. $f^* g$ 5. $\frac{f}{g} g \neq 0$

Theorem:

- Polynomials are continuous everywhere
- Rational functions are continuous everywhere except when denominator = 0
- Root functions are continuous everywhere in their domains
- Trigonometric functions are continuous everywhere in their domains.

Example: Where is $h(x) = \sqrt[3]{x} \cdot (1+x^3)$ continuous?

To proceed, evaluate the domain of each "piece" of the function.

Root:	Let	$f(x) = \sqrt[3]{x}$	D: f(x):	$x \in \mathbb{R}$
Poly:	Let	$g(x) = 1 + x^3$	D: g(x):	$x \in \mathbb{R}$

Since, h(x) = g(x) f(x),

And f(x) and g(x) are continuous in their full domains, h(x) is also continuous on

 $x \in \mathbb{R}$

Example: Where is $h(x) = \frac{\sin x}{x+1} + \sqrt{x-1}$ continuous?

Trig: Let $f(x) = \sin x$ $D: f(x): x \in \mathbb{R}$ Poly: Let g(x) = x+1 $D: g(x): x \in \mathbb{R}$ but $\frac{f(x)}{g(x)} \neq 0 \Rightarrow x \neq -1$ Root: Let $p(x) = \sqrt{x-1}$ $D: p(x): x \in [1, \infty)$ Since: $h(x) = \frac{f(x)}{g(x)} + p(x)$ h(x) continuous on $x \in [1, \infty)$ Theorem: If f is continuous at b, and $\lim_{x \to a} g(x) = b$ then

$$\lim_{x \to a} f(g(x)) = f\left(\lim_{x \to a} g(x)\right) = f(b)$$

Basically, the composition of two continuous functions is continuous.

BIG ONE!

(pg. 52) Intermediate Value Theorem (IVT)

Suppose that *f* is continuous on the closed interval [*a*, *b*] and let *N* be any number between f(a) and f(b), where $f(a) \neq f(b)$. Then, there exists a number *c* in [*a*, *b*] such that f(c) = N.

Example: Show that $\cos x = x$ has a root on the interval (0, 1).

1st, Let $f(x) = \cos x - x$

Now, show that f(x) = 0 somewhere on the interval $x \in (0,1)$

2nd, find
$$f(0) = \cos(0) - 0 = 1 - 0 = 1$$

 $f(1) = \cos(1) - 1 \approx 0.5403 - 1 = -0.4597$

3rd, thus: f(0) > 0 > f(1)1 > 0 > -0.4597

That means N = 0 is a number between f(0) and f(1). f is continuous because it's a combination of trigonometric function and a polynomial. So IVT holds. So, there must be a "c" between 0 and 1 such that f(c) = 0.

In other words, $f(x) = \cos x - x$ must have at least 1 root between $x \in (0,1)$.

Aside, how might you estimate the root? Hint, apply the IVT iteratively while making the interval smaller each time.