## Section 1.4 Calculating Limits

## First, the rules:

Suppose: $\quad \lim _{x \rightarrow a} f(x)$ and $\lim _{x \rightarrow a} g(x)$ exist.
Then:

Summation:
$\lim _{x \rightarrow a}[f(x)+g(x)]=\lim _{x \rightarrow a} f(x)+\lim _{x \rightarrow a} g(x)$
Difference:
$\lim _{x \rightarrow a}[f(x)-g(x)]=\lim _{x \rightarrow a} f(x)-\lim _{x \rightarrow a} g(x)$
Constant over: $\quad \lim _{x \rightarrow a} c f(x)=c \cdot \lim _{x \rightarrow a} f(x)$
a function

Product:
$\lim _{x \rightarrow a}[f(x) \cdot g(x)]=\lim _{x \rightarrow a} f(x) \cdot \lim _{x \rightarrow a} g(x)$
Quotient: $\quad \lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\frac{\lim _{x \rightarrow a} f(x)}{\lim _{x \rightarrow a} g(x)}$ provided $\lim _{x \rightarrow a} g(x) \neq 0$

Power:

$$
\lim _{x \rightarrow a}[f(x)]^{n}=\left[\lim _{x \rightarrow a} f(x)\right]^{n}
$$

Constant: $\quad \lim _{x \rightarrow a} c=c$

## Some Basic Tools:

Basis for all polynomials: $\quad \lim _{x \rightarrow a} x=a$
n, a positive integer: $\quad \lim _{x \rightarrow a} x^{n}=a^{n}$
n, a positive integer: $\quad \lim _{x \rightarrow a} \sqrt[n]{x}=\lim _{x \rightarrow a} x^{\frac{1}{n}}=\sqrt[n]{a}=a^{\frac{1}{n}}$
with $a>0, \mathrm{n}=$ even $\quad a$ unrestricted, $\mathrm{n}=$ odd
Putting it all together: $\quad \lim _{x \rightarrow a} \sqrt[n]{f(x)}=\lim _{x \rightarrow a}[f(x)]^{\frac{1}{n}}=\left[\lim _{x \rightarrow a} f(x)\right]^{\frac{1}{n}} \stackrel{\text { or }}{=} \sqrt[n]{\lim _{x \rightarrow a} f(x)}$
again, restrictions on $f$ for $n=$ even or odd.

## Example, Expanding Limit Notation:

$$
\begin{aligned}
& \lim _{x \rightarrow 2} \frac{x^{3}+4 \mathrm{x}^{2}-1}{3-2 \mathrm{x}}=\frac{\lim _{x \rightarrow 2} x^{3}+4 \mathrm{x}^{2}-1}{\lim _{x \rightarrow 2} 3-2 \mathrm{x}}=\frac{\lim _{x \rightarrow 2}\left(x^{3}\right)+\lim _{x \rightarrow 2}\left(4 \mathrm{x}^{2}\right)-\lim _{x \rightarrow 2}(1)}{\lim _{x \rightarrow 2}(3)-\lim _{x \rightarrow 2}(2 \mathrm{x})} \\
& =\frac{\lim _{x \rightarrow 2}\left(x^{3}\right)+4 \cdot \lim _{x \rightarrow 2}\left(x^{2}\right)-\lim _{x \rightarrow 2}(1)}{\lim _{x \rightarrow 2}(3)-2 \cdot \lim _{x \rightarrow 2}(x)}=\frac{(2)^{3}+4(2)^{2}-(1)}{(3)-2(2)}=\frac{8+16-1}{3-4} \\
& =\frac{23}{-1}=-23
\end{aligned}
$$

From this example, note that when you have a polynomial (as we had one in the numerator and another one in the denominator) or a rational function (i.e. poly / poly) the limit can be found by direct substitution.

From above:

$$
\lim _{x \rightarrow 2} \frac{x^{3}+4 x^{2}-1}{3-2 x}=\frac{(2)^{3}+4(2)^{2}-1}{3-2(2)}=\frac{8+16-1}{3-4}=-23 \text { (as before) }
$$

Other functions that behave like this are:
Trigonometric Functions
Example:

$$
\lim _{x \rightarrow \frac{\pi}{2}} \sin (x)=\sin \left(\frac{\pi}{2}\right)=1
$$

And, generally:

$$
\lim _{\theta \rightarrow a} \sin (\theta)=\sin (a) \quad, \quad \lim _{\theta \rightarrow a} \cos (\theta)=\cos (a)
$$

In fact, any function that is continuous at $a$ has the direct substitution property - we saw that last time!

## Formally:

If $f(x)$ is continuous at $a$ :

$$
\lim _{x \rightarrow a} f(x)=f(a)
$$

But, what happens when we are discontinuous? What kinds of discontinuities can you think of?

## Asymptotes



A full limit
DNE Here
exists here
How do we handle these and know what we have?

## Example:

$$
\lim _{x \rightarrow-4} \frac{x^{2}+5 x+4}{x^{2}+3 x-4}=\frac{(-4)^{2}+5(-4)+4}{(-4)^{2}+3(-4)-4}=\frac{16-20+4}{16-12-4}=\frac{0}{0} \quad(\text { bad, but this does not equal } 0!)
$$

I see a rational function so I think substitution. However, you cannot say anything about the limit.

So, factor and try again.

$$
\lim _{x \rightarrow-4} \frac{x^{2}+5 x+4}{x^{2}+3 x-4}=\lim _{x \rightarrow-4} \frac{(x+4)(x+1)}{(x+4)(x-1)}=\lim _{x \rightarrow-4} \frac{(x+1)}{(x-1)}=\frac{-4+1}{-4-1}=\frac{-3}{-5}=\frac{3}{5}
$$

A cancellation means you have a hole at $(x-$ constant $)=0$, whatever that constant may be. Also, you can always graph the function to find the limit visually.

## Rationalization:

## Example:

$\lim _{x \rightarrow 7} \frac{\sqrt{x+2}-3}{x-7}$ (multiply by the conjugate pair of radical part)

$$
\begin{gathered}
\lim _{x \rightarrow 7} \frac{\sqrt{x+2}-3}{x-7} \cdot \frac{\sqrt{x+2}+3}{\sqrt{x+2}+3}=\lim _{x \rightarrow 7} \frac{(x+2)-9}{(x-7)(\sqrt{x+2}+3)}=\lim _{x \rightarrow 7} \frac{(x-7)}{(x-7)(\sqrt{x+2}+3)} \\
\quad=\lim _{x \rightarrow 7} \frac{1}{\sqrt{x+2}+3}=\frac{1}{\sqrt{7+2}+3}=\frac{1}{3+3}=\frac{1}{6}
\end{gathered}
$$

## Other Ideas

Squeeze Theorem (also know nas sandwich theorem)
If $f(x) \leq g(x) \leq h(x)$ when $x$ is near $a$ (except possibly at a) and,

$$
\lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a} h(x)=L \text { then, } \lim _{x \rightarrow a} g(x)=L
$$

Graphically:


When would I need this? This comes up with trigonometric functions quite a bit.

## Example:

$\lim _{x \rightarrow 0} x^{2} \cdot \sin \left(\frac{1}{x}\right)=?$
We first see that $\lim _{x \rightarrow 0} x^{2} \cdot \sin \left(\frac{1}{x}\right)=\lim _{x \rightarrow 0} x^{2} \cdot \lim _{x \rightarrow 0} \sin \left(\frac{1}{x}\right)$
But that doesn't help us because of that 0 in the denominator.
So, our only other option at this point is to try bounding with the squeeze theorem.
$1^{\text {st }}$, we know: $-1 \leq \sin \left(\frac{1}{x}\right) \leq 1$ because that's the range of sine.
Now, multiply through by $\quad x^{2}$ to get $-x^{2} \leq x^{2} \cdot \sin \left(\frac{1}{x}\right) \leq x^{2}$.
Evaluate the limits:

$$
\begin{aligned}
& \lim _{x \rightarrow 0}-x^{2}=0 \text { and } \lim _{x \rightarrow 0}+x^{2}=0, \text { so by squeeze theorem, } \\
& \lim _{x \rightarrow 0} x^{2} \cdot \sin \left(\frac{1}{x}\right)=0
\end{aligned}
$$

Graphically:


Finally, limits by invoking other limits.
Recall in Section 1.3: $\lim _{x \rightarrow 0} \frac{\sin x}{x}=1$ which we found numerically.

## Example:

$$
\lim _{x \rightarrow 0} \frac{\sin 14 x}{3 x}=?
$$

If I use direct substitution, I get a zero in the denominator. Not good. So, I have to do something else.

What I want to do is force the argument of sin to look the same as the denominator.
So: $\lim _{x \rightarrow 0} \frac{\sin 14 x}{3 x}=\lim _{x \rightarrow 0}\left(\frac{14}{14}\right) \cdot \frac{\sin 14 x}{3 x}$, or simply multiply by 1 .
Rewrite as: $\lim _{x \rightarrow 0} \frac{14}{3} \cdot \frac{\sin 14 x}{14 x}=\frac{14}{3} \cdot \lim _{x \rightarrow 0} \frac{\sin 14 x}{14 x}$
Now notice: as $x$ goes towards 0 , what is happening to $14 x$ ? It goes even faster.
Now, let $y=14 x$

$$
\frac{14}{3} \cdot \lim _{y \rightarrow 0} \frac{\sin y}{y}=\frac{14}{3}(1)=\frac{14}{3}
$$

## Example:

$\lim _{t \rightarrow 0} \frac{\tan (4 \mathrm{t})}{\sin (3 \mathrm{t})}=\lim _{t \rightarrow 0}\left(\frac{\sin (4 \mathrm{t})}{\cos (4 \mathrm{t})} \cdot \frac{1}{\sin (3 \mathrm{t})} \cdot \frac{t}{t}\right)=\lim _{t \rightarrow 0}\left(\frac{\sin (4 \mathrm{t})}{t} \cdot \frac{1}{\cos (4 \mathrm{t})} \cdot \frac{t}{\sin (3 \mathrm{t})}\right)=$ note: introduce $\mathrm{t} / \mathrm{t}$ to force the desired form.

$$
\begin{aligned}
& =\lim _{t \rightarrow 0}\left(\frac{4 \cdot \sin (4 t)}{4 t} \cdot \frac{1}{\cos (4 t)} \cdot \frac{3 t}{3 \cdot \sin (3 t)}\right) \quad \begin{array}{l}
\text { Force the coefficients by using multiplication by } \\
" 1 "
\end{array} \\
& =4 \cdot \lim _{t \rightarrow 0} \frac{\sin (4 t)}{4 t} \cdot \lim _{t \rightarrow 0} \frac{1}{\cos (4 t)} \cdot \frac{1}{3} \cdot \lim _{t \rightarrow 0} \frac{3 t}{\sin (4 t)}=4(1) \cdot \frac{(1)}{(1)} \cdot \frac{1}{3}(1)=\frac{4}{3}
\end{aligned}
$$

## Example:

$$
\lim _{x \rightarrow 0} \frac{x}{\sin x}=? \quad \text { Recall: } \lim _{x \rightarrow 0} \frac{\sin x}{x}=1
$$

Use algebra to force structure:

$$
\lim _{x \rightarrow 0} \frac{x}{\sin x}=\lim _{x \rightarrow 0} \frac{x}{\sin x} \cdot \frac{\frac{1}{x}}{\frac{1}{x}}=\lim _{x \rightarrow 0} \frac{1}{\frac{\sin x}{x}}=\frac{\lim _{x \rightarrow 0} 1}{\lim _{x \rightarrow 0} \frac{\sin x}{x}}=\frac{1}{1}=1
$$

## Example:

$$
\begin{aligned}
& \lim _{x \rightarrow 0} \frac{\cos (x)-1}{x}=? \\
& \lim _{x \rightarrow 0} \frac{\cos (x)-1}{x}=\lim _{x \rightarrow 0} \frac{\cos (x)-1}{x} \cdot \frac{(\cos (x)+1)}{(\cos (x)+1)} \text { kind of like rationalization }
\end{aligned}
$$

This time multiplying by $\frac{1 / x}{1 / x}$ will not help us because there is no sine.

$$
\begin{gathered}
=\lim _{x \rightarrow 0} \frac{\cos ^{2}(x)-1}{x(\cos (x)+1)} \quad \text { Recall: } \sin ^{2} x+\cos ^{2} x=1 \Rightarrow \sin ^{2} x=1-\cos ^{2} x \\
=\lim _{x \rightarrow 0} \frac{-\sin ^{2} x}{x(\cos (x)+1)}=\lim _{x \rightarrow 0} \frac{\sin (x)}{x} \cdot \frac{-\sin (x)}{\cos (x)+1}=\left(\lim _{x \rightarrow 0} \frac{\sin (x)}{x}\right) \cdot\left(\lim _{x \rightarrow 0} \frac{-\sin (x)}{\cos (x)+1}\right) \\
=(1)\left(\frac{0}{1+1}\right)=(1)(0)=0
\end{gathered}
$$

