Section 1.3 The Limit of a Function

(pg. 25) Definition

We write $\lim _{x \rightarrow a} f(x)=L$ and say,
"The limit of $f(x)$, as x approaches a equals L "
If we can make the values of $f(x)$ arbitrarily close to L (as close to L as we like) by taking x to be sufficiently close to a (on either side of a) but not equal to a.

Visual Idea:

Suppose: $f(x)=x^{2}-2 x-1$
And, let's further suppose: $\quad x \in(-\infty,-1) \cup(-1,3)$
Notice that how we have preset the domain, we have holes in our graph and, in fact, no graph once we pass $x=3$.

Now, let's talk about this graph with reference to our definition, and the notion:

$$
\lim _{x \rightarrow a} f(x)=L
$$

Let's pick values for a and see what happens.
$a=0$

$$
\begin{equation*}
\lim _{x \rightarrow 0}\left(x^{2}-2 x-1\right)=? \tag{-1}
\end{equation*}
$$

While looking at the plot, trace the values of the graph from the left and right of the point $x=0$. Notice that the y-values must come to the same point as I approach $x=0$ from both the right and left.

Since, $f(x)$ is continuous there, we can substitute $x=0$ into $f(x)$ to find the limit, L. $a=-1$

$$
\begin{equation*}
\lim _{x \rightarrow-1}\left(x^{2}-2 x-1\right)=? \tag{2}
\end{equation*}
$$

Even though I do not have a y-value (it's undefined - a hole), I can still have a limit, because the same y-value is being approached as x gets close to $x=-1$ from BOTH the right and left. Being undefined is inconsequential.
$a=3$

$$
\lim _{x \rightarrow 3}\left(x^{2}-2 x-1\right)=?
$$

DNE
This time the limit does not exist. Why? Because we must be able to approach $x=3$ from BOTH the right and left. This time, we can only come from the left. There is no right. We will learn more about one-sided limits later in this section.

It is possible to evaluate limits without ever having a graph. You can do it algebraically or numerically, by making tables.
pg. 33, \#11: Algebraically: $\lim _{x \rightarrow 2} \frac{x^{2}-2 \mathrm{x}}{x^{2}-x-2}=\lim _{x \rightarrow 2} \frac{x(x-2)}{(x-2)(x+1)}=\lim _{x \rightarrow 2} \frac{x}{x+1}=\frac{2}{3}$
Numerically:

x	$\frac{x^{2}-2 \mathrm{x}}{x^{2}-x-2}$
1.9	0.655172
1.99	0.665552
1.999	0.666556
2	$2 / 3$
2.01	0.667774
2.1	0.677419

Notice: the function above is not defined at $\mathrm{x}=2$, but it still has a limit at $\mathrm{x}=2$.

Example: Let's go back to: $f(x)=x^{2}-2 \mathrm{x}-1$ and redefine it slightly as a piece-ways function.

$$
g(x)=\left\{\begin{array}{cc}
x^{2}-2 \mathrm{x}-1 & x \in(-\infty,-1) \cup(-1,3) \\
4 & x=3, \text { and }, x=-1 \\
2 & x \in(3, \infty)
\end{array}\right.
$$

$$
\lim _{x \rightarrow 3} g(x)=2 \quad \text { Even though } g(3)=4
$$

Example: $\lim _{x \rightarrow 0} \frac{\sin x}{x}=1 \quad$ We need to memorize this one as a building block.

Numerically:

x	$\frac{\sin x}{x}$
0.1	0.998334
0.01	0.999983
0.001	0.999999
0	1
-0.001	0.999999
-0.01	0.999983
-0.1	0.998334

Example: $\quad \lim _{x \rightarrow 0} \sin \left(\frac{\pi}{x}\right) \quad$ Does Not Exist.
Graphically:

$$
\begin{aligned}
& \text { Why? Choose } \quad x=\frac{1}{n} \quad \lim _{x \rightarrow 0} \sin \left(\frac{\pi}{x}\right)=\text { ? } \\
& \begin{array}{lll}
x=\frac{1}{100} & \rightarrow & 0 \\
x=\frac{1}{1000} & \rightarrow & 0 \\
x=\frac{1}{10000} & \rightarrow & 0
\end{array}
\end{aligned}
$$

But,

$$
\begin{array}{lll}
x=\text { others } & \rightarrow & 1 \\
x=\ldots & \rightarrow & -1 \\
x=\ldots & \rightarrow & 1
\end{array}
$$

One Sided Limits

Called the Heaviside Function: $\quad f(x)= \begin{cases}0, & x<0 \\ 1, & x \geq 1\end{cases}$
$\lim _{x \rightarrow 0^{+}} f(x)=1$
"From the Right"
General Notation: $\quad \lim _{x \rightarrow a^{-}} f(x)=L \quad$ Left Hand Limit
The limit as x approaches a from the left. (Note the small - sign behind the a)

$$
\lim _{x \rightarrow a^{+}} f(x)=L \quad \text { Right Hand Limit }
$$

The limit as x approaches a from the right. (Note the small + sign behind the a)

Example:

$$
\lim _{x \rightarrow 0^{-}} g(x)=0 \quad \lim _{x \rightarrow 0^{+}} g(x)=-1 \quad \lim _{x \rightarrow 0} g(x)=\text { DNE }
$$

