Section 1.2 A Catalog of Essential Functions

Power Functions $f(x)=x^{n}$ where n is an integer some examples include:

$f(x)=x$
D: $(-\infty, \infty), \mathrm{R}:(-\infty, \infty)$
$f(x)=x^{2}$
$f(x)=x^{3}$
D: $(-\infty, \infty), R:[0, \infty)$
D: $(-\infty, \infty)$, R: $(-\infty, \infty)$
Root Functions $f(x)=x^{\frac{1}{n}}$ or $f(x)=\sqrt[n]{x}$
some examples include

$$
f(x)=\sqrt{x}
$$

$f(x)=\sqrt[3]{x}$ or $x^{1 / 3}$
D: $[0, \infty), \mathrm{R}:[0, \infty)$
D: $(-\infty, \infty), \mathrm{R}:(-\infty, \infty)$

Reciprocal Functions

Exponential Functions and Logarithmic Functions

some examples include:

$f(x)=\mathrm{e}^{x}$
D: $(-\infty, \infty)$, R: $(0, \infty)$
\times

D: $(0, \infty), R:(-\infty, \infty)$

Absolute Value Functions

Trigonometric Functions

some examples include:

$$
f(x)=\sin (x)
$$

$f(x)=\cos (x)$
D: $x \in \mathbb{R}, x \neq \frac{2 \mathrm{n}+1}{2} \pi$,
D: $(-\infty, \infty), R:[-1,1]$
D: $(-\infty, \infty), \mathrm{R}:[-1,1]$

$$
\begin{gathered}
n=\text { integer } \\
\mathrm{R}:(-\infty, \infty)
\end{gathered}
$$

Just knowing these basic shapes, domains, and ranges, we can build many, many more functions and know what they look like as well-all without a calculator.
$f(x)$

$$
a f(b(x+c))+d
$$

Basic Function
a is the vertical scale factor b is the horizontal scale factor c is the horizontal shift d is the vertical shift

Note on the addition of negative signs

on the vertical scale factor, -a, flips over x-axis on the horizontal scale factor, -b, flips over y-axis

Base Function $\quad z(x)=\sqrt{x}$

Example Graph:

$$
\begin{aligned}
f(x)=2 \sqrt{x} & =2 z(x) & & \text { Vertical Shift }=2 \\
g(x)=\sqrt{x-1} & =z(x-1) & & \text { Horizontal Shift (- right, + left) } \\
h(x)=\sqrt{x}+3 & =z(x)+3 & & \text { Vertical Shift }(- \text { down, + up) } \\
j(x)=\sqrt{\frac{1}{4} x} & =z\left(\frac{1}{4} x\right) & & \text { Horizontal Scale }=1 / 4
\end{aligned}
$$

Example Graph: $\quad f(x)=\frac{-3}{x+1}$
base graph: $g(x)=\frac{1}{x}$
vertical scale: $h(x)=3 g(x)=\frac{3}{x}$
horiz shift: $i(x)=3 g(x+1)=\frac{3}{x+1}$
vertical flip: $j(x)=-3 g(x+1)=-\frac{3}{x+1}$

The beauty of this technique is that it works for any function.
$\operatorname{Ex} f(x)=$?

$f(x+1)=$?
$2 f(x)=$?
$f(-x)=$?

Effect on Domain

Combinations of Functions
Domain

$$
\begin{aligned}
(f+g)(x)=f(x)+g(x) & D(f) \cap D(g) \\
(f-g)(x)=f(x)-g(x) & D(f) \cap D(g) \\
\text { Notation: } \quad(f \times g)(x)=f(x) \times g(x) & D(f) \cap D(g) \\
(f / g)(x)=\frac{f(x)}{g(x)} & D(f) \cap D(g), g(x) \neq 0
\end{aligned}
$$

Example

$$
\text { Let } \begin{array}{ll}
f(x)=x^{2} & g(x)=\sqrt{x} \\
\mathrm{D}:(-\infty, \infty) & \mathrm{D}:[0, \infty)
\end{array}
$$

$$
\begin{array}{cr}
(f+g)(x)=x^{2}+\sqrt{x} & D:(-\infty, \infty) \cap[0, \infty) \Rightarrow[0, \infty) \\
(f-g)(x)=x^{2}-\sqrt{x} & D:(-\infty, \infty) \cap[0, \infty) \Rightarrow[0, \infty) \\
(f \times g)(x)=x^{2} \sqrt{x} & D:(-\infty, \infty) \cap[0, \infty) \Rightarrow[0, \infty) \\
(f / g)(x) \frac{x^{2}}{\sqrt{x}} & D:(-\infty, \infty) \cap[0, \infty) \text { but } x \neq 0 \Rightarrow \\
& (-\infty, \infty) \cap(0, \infty) \Rightarrow(0, \infty)
\end{array}
$$

Composite Functions

Notation:
$(f \circ g)=f(g(x))$
$(g \circ f)=g(f(x))$
Be careful with domains --> $f(g(x))$ has the domain that is all x that gives the right values of g to feed into the function f.

Example:

$$
\begin{aligned}
& f(x)=\sqrt{x-2} \quad g(x)=\frac{1}{x} \\
& f(g(x))=\sqrt{\frac{1}{x}-2} \\
& f(g(x))=\sqrt{\frac{1-2 x}{x}}
\end{aligned}
$$

$$
g(f(x))=\frac{1}{\sqrt{x-2}}
$$

Notice that they are not the same!
D: $f(x) \Rightarrow x-2 \geq 0 \Rightarrow x \geq 2$
D: $g(x) \Rightarrow x \neq 0$
$x \in[2, \infty)$
$x \in(-\infty, 0) \cup(0, \infty)$
D: $f(g(x)) \Rightarrow x \in\left[-\frac{1}{2}, \frac{1}{2}\right]$ with $x \neq 0$
D: $g(f(x)) \Rightarrow x \in \mathbb{R}, x \neq 2$
$g(x) \geq 2 \Rightarrow \frac{1}{x} \geq 2$
$1 \geq 2 \mathrm{x}$ or $1 \leq 2 \mathrm{x}$
$\cup x \in[2, \infty)=(2, \infty)$ $\frac{1}{2} \geq x \quad \frac{1}{2} \leq x$
$\begin{aligned} f(x) & \neq 0 \\ \sqrt{x-2} & \neq 0\end{aligned}$
$x-2 \neq 0 \Rightarrow x \neq 2$
*Be careful with signs!

More on Composite Functions

Essentially when you compose a function, you are making a new function from another function.

The really hard part about composition is understanding what is happening to domain and range.

Specifically, the domain of $f \circ g$ is the set of all x in the domain of g such that the range of $g(x)$ is in the domain of f.

Example: Finding a composition and its domain

Let: $f(x)=\sin (x)$ and $g(x)=1-\sqrt{x}$
To find domain: $1^{\text {st }}$ what is the general domain of $g(x)$?

$$
g(x)=1-\sqrt{x} \quad x \in[0, \infty)
$$

What is the range of $g(x)$?

Now, you must ask yourself, what happens when I put those numbers into $f(x)=\sin (x)$? The normal domain of $\sin (x) \Rightarrow x \in(-\infty, \infty)$

Normal Domain of $f(x), 0$ is not a problem

Domain of $\mathrm{g}(\mathrm{x}), 0$ is not allowed
Hence, domain of $f(g(x))=$ domain $g(x)$
$2^{\text {nd }}$ find $\quad(g \circ f)(x)=f(f(x))=1-\sqrt{\sin (x)}$
To find domain, what is general domain of $f(x)$?

$$
f(x)=\sin (x) \quad x \in(-\infty, \infty)
$$

What is the range of $f(x)$? $\quad[-1,1]$
Now, ask yourself, what happens when I put those numbers into $g(x)=1-\sqrt{x}$?
Trouble: the values [-1,1] won't all work. I must restrict them to numbers
between [0, 1].
How?
Go back to $f(x)=\sin (x)$

So, the original domain of f needs to be restricted to produce any values bigger or equal to 0 .

$$
x \in[0, \pi] \cup[2 \pi, 3 \pi] \cup[4 \pi, 5 \pi] \cup \ldots
$$

This, too, is the domain of $(g \circ f)(x)$. Generally: $\quad x \in[2 \mathrm{n} \pi, 2 \mathrm{n} \pi+\pi]$ where n is any integer.

$$
\begin{aligned}
n=0 & {[0, \pi] } \\
n=1 & {[2 \pi, 3 \pi] } \\
n=-1 & {[-2 \pi,-\pi] } \\
n=2 & {[4 \pi, 5 \pi] }
\end{aligned} \text { Note; negative half works too. }
$$

Example

Now you try: $(f \circ f)(x)$? where $f(x)=\sin (x)$
$f(x)=\sin (x)$
Recall:
$f(f(x))=\sin (\sin (x))$
NO THAT IS NOT $\sin ^{2}(x)$!
Domain of $f: \quad x \in(-\infty, \infty)$
Range of $f: f(x) \in[-1,1]$
Will that work as input to $f(x)$? Yes
So, domain of $f \circ f: \quad x \in(-\infty, \infty)$
Again: $(g \circ g)(x)$ where $g(x)=1-\sqrt{x}$

$$
g(g(x))=1-\sqrt{1-\sqrt{x}}
$$

Domain of $g: \quad x \in[0, \infty)$
Range of g : $\quad g(x) \in(-\infty, 1]$
Will that work as input to $g(x)$? No

Only the values from [0, 1] will work.
How to restrict?
$1-\sqrt{x}=0$
$1-\sqrt{x}=1$
$1=\sqrt{x}$
$x=1$
And
$\sqrt{x}=0$
$x=0$

So original domain must be restricted $\quad x \in[0,1]$

