Section 1.2 A Catalog of Essential Functions

Reciprocal Functions

Exponential Functions and Logarithmic Functions

some examples include:

Absolute Value Functions

Just knowing these basic shapes, domains, and ranges, we can build many, many more functions and know what they look like as well—all without a calculator.

f(x)

af(b(x+c))+d

Basic Function

a is the vertical scale factor *b* is the horizontal scale factor *c* is the horizontal shift *d* is the vertical shift

Note on the addition of negative signs on the vertical scale factor, -a, flips over x-axis on the horizontal scale factor, -b, flips over y-axis

Base Function $z(x) = \sqrt{x}$

Example Graph:

$$f(x) = 2\sqrt{x} = 2z(x)$$

$$g(x) = \sqrt{x-1} = z(x-1)$$

$$h(x) = \sqrt{x+3} = z(x)+3$$

$$j(x) = \sqrt{\frac{1}{4}x} = z(\frac{1}{4}x)$$

Vertical Shift = 2 Horizontal Shift (- right, + left) Vertical Shift (- down, + up) Horizontal Scale = $\frac{1}{4}$

If more than one alteration, do in steps

Example Graph: $f(x) = \frac{-3}{x+1}$

base graph: $g(x) = \frac{1}{x}$ vertical scale: $h(x) = 3g(x) = \frac{3}{x}$ horiz shift: $i(x) = 3g(x+1) = \frac{3}{x+1}$ vertical flip: $j(x) = -3g(x+1) = -\frac{3}{x+1}$

The beauty of this technique is that it works for <u>any</u> function.

Effect on Domain

Combinati	ions of Functions	Domain
	(f+g)(x) = f(x) + g(x)	$D(f) \cap D(g)$
	(f-g)(x) = f(x) - g(x)	$D(f) \cap D(g)$
Notation:	$(f \times g)(x) = f(x) \times g(x)$	$D(f) \cap D(g)$
	$(f/g)(x) = \frac{f(x)}{g(x)}$	$D(f) \cap D(g), g(x) \neq 0$

Example

Let
$$\begin{aligned} f(x) &= x^2 & g(x) = \sqrt{x} \\ D: (-\infty, \infty) & D: [0, \infty) \end{aligned}$$
$$\begin{aligned} (f+g)(x) &= x^2 + \sqrt{x} & D: (-\infty, \infty) \cap [0, \infty) \Rightarrow [0, \infty) \\ (f-g)(x) &= x^2 - \sqrt{x} & D: (-\infty, \infty) \cap [0, \infty) \Rightarrow [0, \infty) \\ (f \times g)(x) &= x^2 \sqrt{x} & D: (-\infty, \infty) \cap [0, \infty) \Rightarrow [0, \infty) \\ (f/g)(x) &= x^2 \sqrt{x} & D: (-\infty, \infty) \cap [0, \infty) \Rightarrow [0, \infty) \\ (f/g)(x) &= x^2 \sqrt{x} & D: (-\infty, \infty) \cap [0, \infty) \Rightarrow [0, \infty) \\ (f/g)(x) &= x^2 \sqrt{x} & D: (-\infty, \infty) \cap [0, \infty) \Rightarrow [0, \infty) \end{aligned}$$

Composite Functions

Notation:

 $(f \circ g) = f(g(x))$ $(g \circ f) = g(f(x))$

Be careful with domains --> f(g(x)) has the domain that is all x that gives the right values of g to feed into the function f.

Example:

$$f(x) = \sqrt{x-2} \qquad g(x) = \frac{1}{x}$$

$$f(g(x)) = \sqrt{\frac{1}{x}-2} \qquad g(f(x)) = \frac{1}{\sqrt{x-2}}$$

$$f(g(x)) = \sqrt{\frac{1-2x}{x}} \qquad g(f(x)) = \frac{1}{\sqrt{x-2}}$$

Notice that they <u>are</u> not the same!

$$D: f(x) \Rightarrow x-2 \ge 0 \Rightarrow x \ge 2 \qquad D: g(x) \Rightarrow x \ne 0 x \in [2,\infty) \qquad x \in (-\infty,0) \cup (0,\infty)$$

D:
$$f(g(x)) \Rightarrow x \in \left[-\frac{1}{2}, \frac{1}{2}\right]$$
 with $x \neq 0$
 $g(x) \ge 2 \Rightarrow \frac{1}{x} \ge 2$
 $1 \ge 2x$ or $1 \le 2x$
 $\frac{1}{2} \ge x$ $\frac{1}{2} \le x$

D:
$$g(f(x)) \Rightarrow x \in \mathbb{R}, x \neq 2$$

 $\cup x \in [2, \infty) = (2, \infty)$
 $f(x) \neq 0$
 $\sqrt{x-2} \neq 0$

 $x - 2 \neq 0 \Rightarrow x \neq 2$

*Be careful with signs!

More on Composite Functions

Essentially when you compose a function, you are making a new function from another function.

The really hard part about composition is understanding what is happening to domain and range.

Specifically, the domain of $f \circ g$ is the set of all *x* in the domain of *g* such that the range of g(x) is in the domain of *f*.

Example: Finding a composition and its domain Let: $f(x)=\sin(x)$ and $g(x)=1-\sqrt{x}$ To find domain: 1st what is the general domain of g(x)? $g(x)=1-\sqrt{x}$ $x \in [0,\infty)$ What is the range of g(x)?

Now, you must ask yourself, what happens when I put those numbers into f(x) = sin(x)? The normal domain of $sin(x) \Rightarrow x \in (-\infty, \infty)$

Hence, domain of f(g(x)) =domain of g(x)

2nd find $(g \circ f)(x) = f(f(x)) = 1 - \sqrt{\sin(x)}$ To find domain, what is general domain of f(x)? $f(x) = \sin(x)$ $x \in (-\infty, \infty)$ What is the range of f(x)? [-1, 1]

> Now, ask yourself, what happens when I put those numbers into $g(x)=1-\sqrt{x}$? Trouble: the values [-1,1] won't all work. I must <u>restrict</u> them to numbers

equal to 0.

 $x \in [0,\pi] \cup [2\pi,3\pi] \cup [4\pi,5\pi] \cup ...$

This, too, is the domain of $(g \circ f)(x)$. Generally: $x \in [2n \pi, 2n \pi + \pi]$ where *n* is any integer.

 $n=0 \quad [0,\pi]$ $n=1 \quad [2\pi,3\pi]$ $n=-1 \quad [-2\pi,-\pi]$ $n=2 \quad [4\pi,5\pi]$ Note; negative half works too.

Example

Now you try: $(f \circ f)(x)$? where $f(x) = \sin(x)$ Recall: $f(x) = \sin(x)$ $f(f(x)) = \sin(\sin(x))$ **NO THAT IS NOT** $\sin^2(x)$!

> Domain of $f: x \in (-\infty, \infty)$ Range of $f: f(x) \in [-1, 1]$ Will that work as input to f(x)? Yes So, domain of $f \circ f: x \in (-\infty, \infty)$

Again: $(g \circ g)(x)$ where $g(x) = 1 - \sqrt{x}$ $g(g(x)) = 1 - \sqrt{1 - \sqrt{x}}$ Domain of g: $x \in [0, \infty)$ Range of g: $g(x) \in (-\infty, 1]$ Will that work as input to g(x)? No Only the values from [0, 1] will work.

How	to	restrict?

$1 - \sqrt{x} = 0$		$1 - \sqrt{x} = 1$
$1 = \sqrt{x}$	And	$\sqrt{x} = 0$
x = 1		x = 0

So original domain must be restricted $x \in [0, 1]$