Section 1.1 Functions and Their Representations

Definition A function f is a rule that assigns to each element x in a set A exactly one element, called $f(x)$, in a set B.

What does it really mean? It implies a dependence.
Example 1: the perimeter P of a square is dependent on what? The lengths of the sides of a square.
$P=4 x$ when x is the length of a side.
Or, more formally:
$P(x)=4 x$
Key The notation $P(x)$ implies that P is dependent on the value of x.
Example 2: position of a falling object
$\mathrm{s}(\mathrm{t})=1 / 2 \mathrm{gt}^{2}+\mathrm{v}_{0} \mathrm{t}+\mathrm{s}_{0}$
where: g is known (gravity)
v_{0} is the initial velocity
S_{0} is the initial position

So, s, position at any time t is dependent on time.
You may have also heard of dependent and independent variables when you graph things.
This is classically represented by:

Language

Domain: (from our definition of a function)
The whole set called A
(informally) anything you can put into a function and get a value out
Range:
The whole set called B
(informally) anything that comes out of a function
Let's link the language together:
Independent variables are the symbols that represent values that are part of the domain of a function.
Dependent variables are the symbols that represent values that are part of the range of a function.

Vertical Line Test A curve in the $x y$ plane is the graph of a function of x if and only if no vertical line intersects the curve more than once.

not a function called a relation

Some examples of functions are polynomials, trigs, logs, absolute value, piecewise, etc.

Symmetry of Functions

$$
\begin{gathered}
\text { Odd } \\
-f(x)=f(-x)
\end{gathered}
$$

fold along the y then fold along the x to get overlap
symmetric about the origin

$$
\begin{gathered}
\text { Even } \\
\mathrm{f}(\mathrm{x})=\mathrm{f}(-\mathrm{x})
\end{gathered}
$$

fold along the y axis and completely overlaps
symmetric about the y axis

odd: $f(x)=x$

* Neither even nor odd - fails both tests

Increasing / Decreasing Functions

A function f is called increasing on an interval I if $f\left(x_{1}\right)<f\left(x_{2}\right)$ where $x_{1}<x_{2}$ in I (graphically: f goes up from left to right)

A function f is called decreasing on an interval I if $f\left(x_{1}\right)>f\left(x_{2}\right)$ where $x_{1}<x_{2}$ in I (graphically: f goes down from left to right)

Increasing: $(\mathrm{A}, \mathrm{B}) \&(\mathrm{C}, \mathrm{D}) \&(\mathrm{E}, \mathrm{F})$
Decreasing: (B,C) \& (D,E)
*NOTE: (depicts open vs. [depicts closed

Example Questions

Notation Examples

$$
f(x)=5 x^{3}+2 x^{2}-7
$$

What is $f(3)$?

$$
\begin{gathered}
f(3)=5(3)^{3}+2(3)^{2}-7 \\
=5(27)+2(9)-7 \\
=135+18-7 \\
=146
\end{gathered}
$$

What is $f\left(y^{2}\right)$?

$$
\begin{gathered}
f\left(y^{2}\right)=5\left(y^{2}\right)^{3}+2\left(y^{2}\right)^{2}-7 \\
=5\left(y^{6}\right)+2\left(y^{4}\right)-7 \\
=5 y^{6}+2 y^{4}-7
\end{gathered}
$$

What is $f(2 y)$?

$$
\begin{gathered}
f(2 y)=5(2 y)^{3}+2(2 y)^{2}-7 \\
=5\left(8 y^{3}\right)+2\left(4 y^{2}\right)-7 \\
=40 y^{3}+8 y^{2}-7
\end{gathered}
$$

Example (using difference quotient)

$$
f(x)=x^{2}+x+1
$$

What is $\frac{f(x)-f(a)}{x-a}$?

$$
f(a)=a^{2}+a+1
$$

So: $\frac{f(x)-f(a)}{x-a}=\frac{\left(x^{2}+x+1\right)-\left(a^{2}+a+1\right)}{x-a}$
Finding Domains
Example 1

$$
f(x)=\frac{3 x}{5 x-2}
$$

We know that the denominator cannot equal 0

$$
\begin{aligned}
& 5 x-2 \neq 0 \\
& \text { So: } \quad 5 x \neq 2 \\
& x \neq \frac{2}{5}
\end{aligned}
$$

Are there any other restrictions? What do you think?

Notation: Many different forms for presenting your answer are similar:

$$
\begin{aligned}
& \left\{\begin{array}{l}
\left.x \mid x \in \mathbb{R}, x \neq \frac{2}{5}\right\} \\
\quad \text { or }
\end{array}\right. \\
& x \in(-\infty, 2 / 5) \cup(2 / 5, \infty) \\
& \quad \text { or } \\
& \left\{x \left\lvert\, x \neq \frac{2}{5}\right.\right\}
\end{aligned}
$$

Example 2
$h(x)=\sqrt{2 x+1}$
Sketch:

We know that anything inside the radical must be non-negative.
So: $\quad \begin{gathered}2 x+1 \geqslant 0 \\ 2 x \geqslant-1 \\ x \geqslant-\frac{1}{2}\end{gathered}$
Domain: $\quad x \in[-1 / 2, \infty)$ or $\left\{x \left\lvert\,-\frac{1}{2} \leq x<\infty\right.\right\}$
Example 3

$$
g(x)=\left\{\begin{array}{cll}
x+2 & \text { if } & x \leqslant-1 \\
x^{2} & \text { if } & x>-1
\end{array}\right.
$$

Sketch:

Domain given in notation: $\quad x \in(-\infty,-1] \cup(-1, \infty) \Rightarrow x \in(-\infty, \infty)$ Range: $g(x) \in(-\infty, \infty)$

Manipulating Variables
Example: A rectangle has area $16 \mathrm{~m}^{2}$. Express the perimeter of the rectangle as a function of the length of one of its sides.

1

What is area? $\begin{gathered}A=l * w \\ 16=l * w\end{gathered}$
And solve for one variable:
$w=\frac{16}{l} \quad$ OR $\quad l=\frac{16}{w}$

$$
P=2 \mathrm{w}+2 \mathrm{l}
$$

$$
P=2\left(\frac{16}{l}\right)+2 \mathrm{~L}
$$

$$
P=2 \mathrm{w}+2 \mathrm{l}
$$

$$
P=2 w+2\left(\frac{16}{w}\right)
$$

What is perimeter?

$$
\begin{array}{ccc}
P=\frac{32}{l}+2 l & \text { or } & P=2 \mathrm{w}+\frac{32}{w} \\
P(l)=\frac{32+2 l^{2}}{l} & & P(w)=\frac{2 \mathrm{w}^{2}+32}{w}
\end{array}
$$

Even / Odd Functions

$$
f(x)=\frac{x^{2}}{x^{4}+1}
$$

Check Even

$$
f(-x)=\frac{(-x)^{2}}{(-x)^{4}+1}=\frac{x^{2}}{x^{4}+1} \quad \text { Even } \quad f(x)=f(-x)
$$

Check Odd

$$
-f(x)=-\left(\frac{x^{2}}{x^{4}+1}\right)=\frac{-x^{2}}{x^{4}+1} \quad \text { Not Odd } \quad f(-x) \neq-f(x)
$$

Visually, what does this mean? Symmetry over y-axis, because function is EVEN.

