Section 1.1 Functions and Their Representations

Definition A function f is a rule that assigns to each element x in a set A exactly one element, called f(x), in a set B.

What does it really mean? It implies a dependence.

Example 1: the perimeter *P* of a square is dependent on what? The lengths of the sides of a square. P = 4x when x is the length of a side.

Or, more formally:

P(x) = 4x

Key The notation P(x) implies that *P* is dependent on the value of *x*.

Example 2: position of a falling object $s(t) = \frac{1}{2}gt^{2} + v_{0}t + s_{0}$ where: g is known (gravity) v_{0} is the initial velocity s_{0} is the initial position

So, *s*, position at any time *t* is dependent on <u>time</u>.

You may have also heard of dependent and independent variables when you graph things. This is classically represented by:

Language

Domain: (from our definition of a function)

The whole set called A

(informally) anything you can put into a function and get a value out ge.

<u>Range:</u>

The whole set called *B* (informally) anything that comes out of a function

Let's link the language together:

<u>Independent variables</u> are the symbols that represent values that are part of the <u>domain</u> of a function.

<u>Dependent variables</u> are the symbols that represent values that are part of the <u>range</u> of a function.

Vertical Line Test A curve in the *xy* plane is the graph of a function of *x* if and only if no vertical line intersects the curve more than once.

Some examples of functions are polynomials, trigs, logs, absolute value, piecewise, etc.

Symmetry of Functions

$\begin{array}{l} \text{Odd} \\ \text{-f}(\mathbf{x}) = \text{f}(\text{-}\mathbf{x}) \end{array}$	Even $f(x) = f(-x)$
fold along the y then fold along the x to get overlap	fold along the y axis and completely overlaps
symmetric about the origin	symmetric about the y axis

* Neither even nor odd – fails both tests

Increasing / Decreasing Functions

A function *f* is called <u>increasing</u> on an interval *I* if $f(x_1) < f(x_2)$ where $x_1 < x_2$ in *I* (graphically: f goes up from left to right)

A function *f* is called <u>decreasing</u> on an interval *I* if $f(x_1) > f(x_2)$ where $x_1 < x_2$ in *I* (graphically: f goes down from left to right)

Increasing: (A,B) & (C,D) & (E,F) Decreasing: (B,C) & (D,E)

*NOTE: (depicts open vs. [depicts closed

Example Questions

Notation Examples

$$f(x) = 5x^3 + 2x^2 - 7$$

What is $f(3)$?
 $f(3)=5(3)^3+2(3)^2-7$
 $=5(27)+2(9)-7$
 $=135+18-7$
 $=146$
What is $f(y^2)$?
 $f(y^2)=5(y^2)^3+2(y^2)^2-7$
 $=5(y^6)+2(y^4)-7$
 $=5y^6+2y^4-7$
What is $f(2y)$?

$$f(2y) = 5(2y)^{3} + 2(2y)^{2} - 7$$

= 5(8y³) + 2(4y²) - 7
= 40y³ + 8y² - 7

Example (using difference quotient) $f(x) = x^2 + x + 1$

What is
$$\frac{f(x)-f(a)}{x-a}$$
?
 $f(a)=a^2+a+1$
So: $\frac{f(x)-f(a)}{x-a}=\frac{(x^2+x+1)-(a^2+a+1)}{x-a}$

Finding Domains

Example 1 $f(x) = \frac{3x}{5x - 2}$

We know that the denominator cannot equal 0

So:
$$5x-2\neq 0$$
$$5x\neq 2$$
$$x\neq \frac{2}{5}$$

Are there any other restrictions? What do you think?

Notation: Many different forms for presenting your answer are similar:

$$\begin{cases} x \mid x \in \mathbb{R}, \ x \neq \frac{2}{5} \\ \text{or} \\ x \in (-\infty, \ 2/5) \cup (2/5, \ \infty) \\ \text{or} \\ x \mid x \neq \frac{2}{5} \end{cases}$$

Example 2
$$h(x) = \sqrt{2x+1}$$

Sketch:

We know that anything inside the radical must be non-negative.

So: $2x+1 \ge 0$ $2x \ge -1$ $x \ge -\frac{1}{2}$

Domain: $x \in [-1/2, \infty)$ or $\left\{ x \mid -\frac{1}{2} \le x < \infty \right\}$

Example 3

$$g(x) = \begin{cases} x+2 & \text{if } x \le -1 \\ x^2 & \text{if } x > -1 \end{cases}$$

Sketch:

Domain given in notation: $x \in (-\infty, -1] \cup (-1, \infty) \Rightarrow x \in (-\infty, \infty)$ Range: $g(x) \in (-\infty, \infty)$

Manipulating Variables

Example: A rectangle has area 16m². Express the perimeter of the rectangle as a function of the length of one of its sides.

Even / Odd Functions

$$f(x) = \frac{x^2}{x^4 + 1}$$

Check Even

$$f(-x) = \frac{(-x)^2}{(-x)^4 + 1} = \frac{x^2}{x^4 + 1}$$
 Even $f(x) = f(-x)$
Check Odd

$$-f(x) = -\left(\frac{x^2}{x^4+1}\right) = \frac{-x^2}{x^4+1}$$
 Not Odd $f(-x) \neq -f(x)$

Visually, what does this mean? Symmetry over y-axis, because function is EVEN.