Name: _____

Directions: Solve the following problems. Give supporting work/justification where appropriate.

1. [10 points] Give a contrapositive proof for the following. Suppose $z \in \mathbb{R}$. If $z \neq 1$ and $z \neq 4$, then $z^2 + 4 \neq 5z$.

2. [10 points] Let $a, b, a', b' \in \mathbb{Z}$ and let $m \in \mathbb{N}$. Show that if $a \equiv a' \pmod{m}$ and $b \equiv b' \pmod{m}$, then $a + b \equiv a' + b' \pmod{m}$.

3. [10 points] Let $x \in \mathbb{R}$. Give a proof by contradiction that x^2 is rational or $(\sqrt{2}) \cdot x$ is irrational.

- 4. [2 parts, 10 points each] Powers of three.
 - (a) Let $a, c \in \mathbb{Z}$. Prove that if $3^a < 3^c$, then $\frac{3^a}{3^c} \le \frac{1}{3}$. (You may use the fact that $f(x) = 3^x$ is an increasing function.)

(b) Use part (a) to show that for all $a, b, c \in \mathbb{Z}$, we have $3^a + 3^b \neq 3^c$.

- 5. [5 points] What is the coefficient of x^5y^6 in the expansion of $(x+y)^{11}$? Give a simplified, numerical answer.
- 6. [2 parts, 10 points each] Algebraic and Combinatorial Proofs. Let $k, n \in \mathbb{Z}$ with $0 \le k \le n$.
 - (a) Give an algebraic proof that $\binom{n}{2}=\binom{k}{2}+k(n-k)+\binom{n-k}{2}.$

(b) Give a combinatorial proof of the same identity. (Hints: let $U = \{1, ..., n\}$. Color k of the integers in U red and the other n-k integers blue. Partition the 2-subsets of U into three groups.)

7. [15 points] Let $a, b \in \mathbb{Z}$. Show that $b \mid a$ and $b \mid a+1$ if and only if b=-1 or b=1.

8. [10 points] Suppose $a, b, c, d \in \mathbb{R}$. Prove that if $a \neq c$ or $b \neq d$, then there is at most one $x \in \mathbb{R}$ such that ax + b = cx + d.