Name: Solutions

Directions: Solve the following problems. Give supporting work/justification where appropriate.

1. [10 points] Give a contrapositive proof for the following. Suppose $z \in \mathbb{R}$. If $z \neq 1$ and $z \neq 4$, then $z^2 + 4 \neq 5z$.

We show that if $z^2+1=5z$, then z=1 or z=4. Indeed, since $z^2+4=5z$, we have that $z^2-5z+4=0$ all so (z-4)(z-1)=0. It follows that z=1 or z=4.

2. [10 points] Let $a, b, a', b' \in \mathbb{Z}$ and let $m \in \mathbb{N}$. Show that if $a \equiv a' \pmod{m}$ and $b \equiv b' \pmod{m}$, then $a + b \equiv a' + b' \pmod{m}$.

Since $a = a' \pmod n$, and $b = b' \pmod m$, we have $m \mid a - a' = a' = m \mid b - b'$.

By definition, this means a - a' = k, m and b - b' = k, m for some $k_1, k_2 \in \mathbb{Z}$.

Add ing these equations gives (a - a') + (b - b') = k, m + k, m, which becomes $(a + b) - (a' + b') = (k_1 + k_2)m$ after reasoning terms. Therefore $m \mid (a + b) - (a' + b')$ and if follows that a + b = a' + b' (mod m).

3. [10 points] Let $x \in \mathbb{R}$. Give a proof by contradiction that x^2 is rational or $(\sqrt{2}) \cdot x$ is irrational.

Suppose for a contradiction that x^2 is irrational and $\sqrt{2}x$ is rational. Since $\sqrt{2}x$ is rational, we have that $\sqrt{2}x = \frac{a}{b}$ for some $a, b \in \mathbb{Z}$ with $b \neq 0$. Squarny both sides gives $(\sqrt{2}x)^2 = \frac{a^2}{b^2}$, or $2x^2 = \frac{a^2}{b^2}$. It follows that $x^2 = \frac{a^2}{2b^2}$, and since a^2 , $2b^2 \in \mathbb{Z}$, this implies that x^2 is rational, contradicting are hypothesis that x^2 is irrational. The

4. [2 parts, 10 points each] Powers of three.

(a) Let $a, c \in \mathbb{Z}$. Prove that if $3^a < 3^c$, then $\frac{3^a}{3^c} \le \frac{1}{3}$. (You may use the fact that $f(x) = 3^x$ is an increasing function.)

Pf. Since $3^a < 3^c$ at the function $f(x) = 3^x$ is increasing, we have that a < c. Since $a, c \in \mathbb{Z}$, a < c implies $a+1 \le c$. Using again that $f(x) = 3^x$ is increasing, we have that $3^{a+1} \le 3^c$. This implies $\frac{3^{a+1}}{3^c} \le 1$ and dividing by 3 gives $\frac{3^a}{3^c} \le \frac{1}{3}$.

(b) Use part (a) to show that for all $a,b,c\in\mathbb{Z}$, we have $3^a+3^b\neq 3^c$.

Suppose for a contradiction that there exist a,b,c $\in \mathbb{Z}$ such that $3^a + 3^b = 3^c$. Since $3^b > 0$, we have that $3^a < 3^a + 3^b = 3^c$, and so $3^a < 3^c$. Similarly, we have $3^b < 3^a + 3^b = 3^c$. It follows from part (a) that $\frac{3^a}{3^c} = \frac{1}{3}$ and $\frac{3^b}{3^c} = \frac{1}{3}$. Dividing both sides of $3^a + 3^b = 3^c$ by 3^c gives $1 = \frac{3^a}{3^c} + \frac{3^b}{3^c} = \frac{1}{3} + \frac{1}{3} = \frac{2}{3}$, and so we have the contradiction $1 \le \frac{2}{3}$.

Scratch: Work

backward. WANT: $\frac{3^a}{3^c} \leq \frac{1}{3}$ $3^{a+1} \leq 3^c$

1 atle C

5. [5 points] What is the coefficient of x^5y^6 in the expansion of $(x+y)^{11}$? Give a simplified, numerical answer.

By the binanial theorem, this is
$$\binom{11}{5}$$
. We campule:

$$\binom{11}{5} = \frac{(11)!}{5! (11-5)!} = \frac{(11)!}{(5!)(6!)} = \frac{11 \cdot 10^{3} \cdot \cancel{8} \cdot \cancel{7} \cdot \cancel{6}!}{(\cancel{8} \cdot \cancel{8} \cdot \cancel{7} \cdot \cancel{6}!)} = 11 \cdot \cancel{3} \cdot \cancel{2} \cdot \cancel{7} = 11 \cdot \cancel{42} = (10+1)(42)$$

$$= 420 + 42 = \boxed{462}$$

- 6. [2 parts, 10 points each] Algebraic and Combinatorial Proofs. Let $k, n \in \mathbb{Z}$ with $0 \le k \le n$.
 - (a) Give an algebraic proof that $\binom{n}{2} = \binom{k}{2} + k(n-k) + \binom{n-k}{2}$.

We cample
$$\binom{k}{2} + k(n-k) + \binom{n-k}{2} = \frac{k(k-1)}{2} + k(n-k) + \frac{(n-k)(n-k-1)}{2} = \frac{1}{2} \left[k(k-1) + 2k(n-k) + ln-k)(n-k-1) \right]$$

$$= \frac{1}{2} \left[k(k-1) + k(n-k) + k(n-k) + (n-k)(n-k-1) \right] = \frac{1}{2} \left[k(k-1) + (n-k) + (n-k-1) \right]$$

$$= \frac{1}{2} \left[k(n-1) + (n-k)(n-1) \right] = \frac{1}{2} \left[(n-1)(k+(n-k)) \right] = \frac{1}{2} \left[(n-1)n \right] = \binom{n}{2}.$$

(b) Give a combinatorial proof of the same identity. (Hints: let $U = \{1, ..., n\}$. Color k of the integers in U red and the other n-k integers blue. Partition the 2-subsets of U into three groups.)

As in the hint, we color k elements of U red and the remaining n-k elements now. Let $A = \{ x \in \mathcal{U} : |x| = 2 \}$. Let B be the set of all $x \in A$ such that both elements in X are red. Since there are k rev elements, $|B| = {k \choose 2}$. Let D be the set of all XEA such that both elements in X are blue, a note that $|D| = {n-k \choose 2}$ since U has n-L blue elements. Let C be the set of all XEA such that X consists of one red element and one blue element. Since there are k ways to choose the red element and n-k ways to choose the blue element, we have |C| = k(n-k). Since A is the disjoint unran of B, C, and D, it follows that $\binom{n}{2} = |A| = |B| + |C| + |D| = \binom{k}{2} + k(n-k) + \binom{n-k}{2}$

7. [15 points] Let $a, b \in \mathbb{Z}$. Show that $b \mid a$ and $b \mid a+1$ if and only if b=-1 or b=1.

(=) Suppose bla and blat1. By definition, $a=k_1b$ and $a+1=k_2b$ for Some $k_1,k_2\in\mathbb{Z}$. Subtracting the former from the latter gives $(a+1)-a=k_2b-k_1b$

and so $1=(k_2-k_1)b$. Since b[1, Ffollows that <math>b=-1 or b=1.

(c) Let $a,b\in\mathbb{Z}$. Note that 1|a and -1|a since a=(1)(a) and a=(-1)(a). It follows that if b=1 or b=-1, then b|a.

8. [10 points] Suppose $a, b, c, d \in \mathbb{R}$. Prove that if $a \neq c$ or $b \neq d$, then there is at most one $x \in \mathbb{R}$ such that ax + b = cx + d.

Let $L = \{x \in \mathbb{R}: ax + b = cx + d\}$. We prove the contrapositive: if $|L| \ge 2$, then a = c and b = d. Suppose that x_1 and x_2 are distinct elements of L. We have that $ax_1 + b = cx_1 + d$ and $ax_2 + b = cx_2 + d$. Subtractly these gives $(ax_1 + b) - (ax_2 + b) = (cx_1 + d) - (cx_2 + d)$, or $a(x_1 - x_2) = c(x_1 - x_2)$. Since $x_1 \ne x_2$, we have $x_1 - x_2 \ne 0$ and so we may divide both sides by $x_1 - x_2$ to obtain a = c. Since a = c, we have $ax_1 = cx_1$ and $ax_2 + b = cx_3 + d$ implies b = d.

TO A