Name: Solutions

Directions: Solve the following problems. Give supporting work/justification where appropriate.

1. [10 points] Give a contrapositive proof for the following. Suppose $z \in \mathbb{R}$. If $z \neq 1$ and $z \neq 4$, then $z^{2}+4 \neq 5 z$.

We show that if $z^{2}+1=5 z$, then $z=1$ or $z=4$. Indeed, since $z^{2}+4=5 z$, we have that $z^{2}-5 z+4=0$ ad so $(z-4)(z-1)=0$. If follows that $z=1$ or $z=4$.
2. [10 points] Let $a, b, a^{\prime}, b^{\prime} \in \mathbb{Z}$ and let $m \in \mathbb{N}$. Show that if $a \equiv a^{\prime}(\bmod m)$ and $b \equiv b^{\prime}$ $(\bmod m)$, then $a+b \equiv a^{\prime}+b^{\prime}(\bmod m)$.
Since $a \equiv a^{\prime}(\bmod m)$, and $b \equiv b^{\prime}(\bmod m)$, we have $\left.m / a-a^{\prime} a\right) m / b-b^{\prime}$. By definition, this means $a-a^{\prime}=k_{1} m$ and $b-b^{\prime}=k_{2} m$ for save $k_{1}, k_{2} \in \mathbb{Z}$.
Add ing these equations gave $\left(a-a^{\prime}\right)+\left(b-b^{\prime}\right)=k_{1} m+k_{2} m$, which becomes $(a+b)-\left(a^{\prime}+b^{\prime}\right)=\left(k_{1}+k_{2}\right) m$ after rearranging terms. Therefore $m \mid(a+b)-\left(a^{\prime}+b^{\prime}\right)$ and it follows that $a+b \equiv a^{\prime}+b^{\prime} \quad(\bmod m)$.
3. [10 points] Let $x \in \mathbb{R}$. Give a proof by contradiction that x^{2} is rational or $(\sqrt{2}) \cdot x$ is irrational.
Suppose for a contradiction that x^{2} is irrational and $\sqrt{2} x$ is rational.
Since $\sqrt{2} x$ is rational, we have that $\sqrt{2} x=\frac{a}{b}$ for sone $a, b \in \mathbb{Z}$ with $b \neq 0$. Squaring both sides gives $(\sqrt{2} x)^{2}=\frac{a^{2}}{b^{2}}$, or $2 x^{2}=\frac{a^{2}}{b^{2}}$. If follows that $x^{2}=\frac{a^{2}}{2 b^{2}}$, and since $a^{2}, 2 b^{2} \in \mathbb{Z}$, this implies that x^{2} is rational, contradicting or hypothesis tat x^{2} is irrational
4. [2 parts, 10 points each] Powers of three.
(a) Let $a, c \in \mathbb{Z}$. Prove that if $3^{a}<3^{c}$, then $\frac{3^{a}}{3^{c}} \leq \frac{1}{3}$. (You may use the fact that $f(x)=3^{x}$ is an increasing function.)
Scratch: walk
backward. want. If Since $3^{a}<3^{c}$ al the function $f(x)=3^{x}$ is increasing, we

$$
\left\{\begin{array}{l}
\frac{3^{a}}{3^{c}} \leq \frac{1}{3} \\
3^{a+1} \leq 3^{c} \\
a+1 \leq c
\end{array}\right.
$$

have that $a<c$. Since $a, c \in \mathbb{Z}$, $a<c$ implies $a+1 \leq c$. Using again that $f(x)=3^{x}$ is increasing, we have that $3^{a+1} \leq 3^{c}$. This implies $\frac{3^{a+1}}{3^{c}} \leq 1$ and dividing by 3 gives $\frac{3^{a}}{3^{c}} \leq \frac{1}{3}$.
(b) Use part (a) to show that for all $a, b, c \in \mathbb{Z}$, we have $3^{a}+3^{b} \neq 3^{c}$.

Suppose for a contradiction that there exist $a, b, c \in \mathbb{Z}$ such that $3^{a}+3^{b}=3^{c}$. Since $3^{b}>0$, we have that $3^{a}<3^{a}+3^{b}=3^{c}$, and so $3^{a}<3^{c}$. Similarly, we have $3^{b}<3^{a}+3^{b}=3^{c}$. It follows fran part (a) that $\frac{3^{a}}{3^{c}} \leq \frac{1}{3}$ and $\frac{3^{b}}{3^{c}} \leq \frac{1}{3}$. Dividing both sides of $3^{a}+3^{b}=3^{c}$ by 3^{c} gives $1=\frac{3^{a}}{3^{c}}+\frac{3^{b}}{3^{c}} \leq \frac{1}{3}+\frac{1}{3}=\frac{2}{3}$, and

So we have the contradiction $1 \leq \frac{2}{3}$.
5. [5 points] What is the coefficient of $x^{5} y^{6}$ in the expansion of $(x+y)^{11}$? Give a simplified, numerical answer.
By the binomial theorem, this is $\binom{11}{5}$. We canpule:

$$
\begin{aligned}
\binom{11}{5}=\frac{(11)!}{5!(11-5)!}=\frac{(11)!}{(5!)(6!)}=\frac{11 \cdot 10 \cdot \frac{3}{7} \cdot \frac{2}{8} \cdot 7 \cdot 6!}{(8 \cdot 4 \cdot 3 \cdot 3 \cdot 2 \cdot 1) \cdot(61)}=11 \cdot 3 \cdot 2 \cdot 7=11 \cdot 42 & =(10+1)(42) \\
& =420+42=462
\end{aligned}
$$

6. [2 parts, 10 points each] Algebraic and Combinatorial Proofs. Let $k, n \in \mathbb{Z}$ with $0 \leq k \leq n$.
(a) Give an algebraic proof that $\binom{n}{2}=\binom{k}{2}+k(n-k)+\binom{n-k}{2}$.

We compute $\binom{k}{2}+k(n-k)+\binom{n-k}{2}=\frac{k(k-1)}{2}+k(n-k)+\frac{(n-k)(n-k-1)}{2}=\frac{1}{2}[k(k-1)+2 k(n-k)+(n-k)(n-1-1)]$

$$
\begin{aligned}
& =\frac{1}{2}[k(k-1)+k(n-k)+k(n-k)+(n-k)(n-k-1)]=\frac{1}{2}[k((k-1)+(n-k))+(n-k)(k+(n-k-1))] \\
& =\frac{1}{2}[k(n-1)+(n-k)(n-1)]=\frac{1}{2}[(n-1)(k+(n-k))]=\frac{1}{2}[(n-1) n]=\binom{n}{2}
\end{aligned}
$$

(b) Give a combinatorial proof of the same identity. (Hints: let $U=\{1, \ldots, n\}$. Color k of the integers in U red and the other $n-k$ integers blue. Partition the 2 -subsets of U into three groups.)
As in the hint, we color k elements of U red and the remaining $n-k$ elements nod.
Let $A=\{x \subseteq U:|x|=2\}$. Let B be the set of all $x \in A$ such that both elements in X are red. Since there are k red elements, $|B|=\binom{k}{2}$. Let

 such that X consists of one red element and are blue element. Since there are k ways to choose the red element and $n-k$ ways to close the blue element, we have $|C|=k(n-k)$. Since A is the disjoint union of B, C, as D, it follows that

$$
\binom{n}{2}=|A|=|B|+|C|+|D|=\binom{k}{2}+k(n-k)+\binom{n-k}{2} .
$$

7. [15 points] Let $a, b \in \mathbb{Z}$. Show that $b \mid a$ and $b \mid a+1$ if and only if $b=-1$ or $b=1$.
\Leftrightarrow Suppose bla aud $b l a+1$. By definition, $\left.a=k_{1} b \quad a\right) a+1=k_{2} b$ for Some $k_{1}, k_{2} \in \mathbb{Z}$. Subtracting the former fran the latter gives

$$
(a+1)-a=k_{2} b-k_{1} b
$$

and so $1=\left(k_{2}-k_{1}\right) b$. Since $b l 1_{1}$, it follows that $b=-1$ or $b=1$.
\Leftrightarrow Let $a, b \in \mathbb{Z}$. Note that $1 \mid a$ ad $-1 \mid a$ since $a=(1)(a)$ al $a=(-1)(-a)$. If follows that if $b=1$ or $b=-1$, them bia.
8. [10 points] Suppose $a, b, c, d \in \mathbb{R}$. Prove that if $a \neq c$ or $b \neq d$, then there is at most one $x \in \mathbb{R}$ such that $a x+b=c x+d$.
Let $L=\{x \in \mathbb{R}: a x+b=c x+d\}$. We prove the contrapositive: if $|L| \geq 2$, then $a=c$ and $b=d$. Suppose that x_{1} and x_{2} are distinct elements of L. We have that $a x_{1}+b=c x_{1}+d$ ad $a x_{2}+b=c x_{2}+d$. Subtracting these gives $\left(a x_{1}+b\right)-\left(a x_{2}+b\right)=\left(c x_{1}+d\right)-\left(c x_{2}+d\right)$, or $a\left(x_{1}-x_{2}\right)=c\left(x_{1}-x_{2}\right)$. Since $x_{1} \neq x_{2}$, we have $x_{1}-x_{2} \neq 0$ an so we may divide both sides by $x_{1}-x_{2}$ to obtain $a=c$. Since $a=c$, we have $a x_{1}=c x_{1}$ al so $a x_{1}+b=c x_{1}+d$ implies $b=d$.

