Name: _____

Directions: Solve the following problems. Give supporting work/justification where appropriate.

1. [6 parts, 4 points each] First, express the following statements using the standard logical operators $\lor, \land, \sim, \Rightarrow, \Leftrightarrow$ and given open sentences. Second, state whether the statement is true or false (write the entire word); no justification necessary.

	$P_1: 2+3=8$ $R(x): x \text{ is prime}$	P_2 : red is a S(x): x is odd		Q(X): X is an infinite set
(a) R	ted is a color and $2 + 3 =$	8.	(d)	The integer 5 is odd if and only if \mathbb{Z} is an infinite set.
(b) 2	$+3 \neq 8.$		(e)	For 23 to be prime, it is sufficient that 8 is odd.
(c) I	f 3 is not odd, then red is	not a color.	(f)	Either 21 is prime or 9 is odd, but not both.

2. [2 points] What 1900-era discovery prompted an overhaul of formal mathematics, and why?

- 3. Truth table
 - (a) [6 points] Give a truth table for $(P \Rightarrow Q) \Rightarrow (Q \Rightarrow P)$.

(b) [4 points] Find a simple formula which is equivalent to $(P \Rightarrow Q) \Rightarrow (Q \Rightarrow P)$.

- 4. Let ϕ_1 be the formula $(P \Rightarrow Q) \Rightarrow R$ and let ϕ_2 be the formula $P \Rightarrow (Q \Rightarrow R)$.
 - (a) [6 points] Find a setting of truth values for P, Q, and R that makes ϕ_1 false and ϕ_2 true.

- (b) [4 points] Based on part (a), what can we conclude about ϕ_1 and ϕ_2 ?
- 5. [5 points] Consider the following definition: "An integer n is *large* if it takes more than 20 seconds to write down n in decimal." What is problematic about this definition? How can those problems be addressed?

6. [4 parts, 4 points each] First, translate the following statements in formal logic to English as naturally as possible. Second, state whether the statement true or false (write the entire word); give brief justifications where appropriate for partial credit.

(a)
$$\exists n \in \mathbb{Z}, (\exists s \in \mathbb{Z}, n = 2s) \land (\exists t \in \mathbb{Z}, n = 2t + 1)$$

- (b) $\forall x \in \mathbb{R}, \exists y \in \mathbb{R}, x + y < 0$
- (c) $\exists y \in \mathbb{R}, \forall x \in \mathbb{R}, x + y < 0$
- (d) $\forall m \in \mathbb{N}, \exists n \in \mathbb{N}, n \ge m \land (\forall k \in \mathbb{N}, 1 < k < n \Rightarrow \frac{n}{k} \notin \mathbb{N})$
- 7. [3 parts, 3 points each] Negate each sentence below in English as naturally as possible.
 - (a) Some integer is both a perfect square and a perfect cube.
 - (b) Every set of real numbers has a positive real number as a member.
 - (c) For each nonempty set A of real numbers, if $a \leq 100$ for each $a \in A$, then there exists $M \in A$ such that $b \leq M$ for each $b \in A$.

8. [8 points] Prove that if n is an odd integer, then $n^2 - 1$ is a multiple of 4.

- 9. [2 parts, 8 points each] A two-step proof. In both parts, let a, b, and d be integers.
 - (a) Prove that if $d \mid b$ and $d \mid a + b$, then $d \mid a$.

(b) Use part (a) to show that if $d \mid an + b$ for each $n \in \mathbb{Z}$, then $d \mid a$ and $d \mid b$.