Name: \qquad
Directions: Solve the following problems. Give supporting work/justification where appropriate.

1. [6 parts, 4 points each] First, express the following statements using the standard logical operators $\vee, \wedge, \sim, \Rightarrow, \Leftrightarrow$ and given open sentences. Second, state whether the statement is true or false (write the entire word); no justification necessary.

$$
\begin{array}{ccc}
P_{1}: 2+3=8 & P_{2}: \text { red is a color } & Q(X): X \text { is an infinte set } \\
R(x): x \text { is prime } & S(x): x \text { is odd } &
\end{array}
$$

(a) Red is a color and $2+3=8$.
(d) The integer 5 is odd if and only if \mathbb{Z} is an infinite set.
(b) $2+3 \neq 8$.
(e) For 23 to be prime, it is sufficient that 8 is odd.
(c) If 3 is not odd, then red is not a color.
(f) Either 21 is prime or 9 is odd, but not both.
2. [2 points] What 1900-era discovery prompted an overhaul of formal mathematics, and why?
3. Truth table
(a) [6 points] Give a truth table for $(P \Rightarrow Q) \Rightarrow(Q \Rightarrow P)$.
(b) $[4$ points $]$ Find a simple formula which is equivalent to $(P \Rightarrow Q) \Rightarrow(Q \Rightarrow P)$.
4. Let ϕ_{1} be the formula $(P \Rightarrow Q) \Rightarrow R$ and let ϕ_{2} be the formula $P \Rightarrow(Q \Rightarrow R)$.
(a) [6 points] Find a setting of truth values for P, Q, and R that makes ϕ_{1} false and ϕ_{2} true.
(b) [4 points] Based on part (a), what can we conclude about ϕ_{1} and ϕ_{2} ?
5. [5 points] Consider the following definition: "An integer n is large if it takes more than 20 seconds to write down n in decimal." What is problematic about this definition? How can those problems be addressed?
6. [4 parts, 4 points each] First, translate the following statements in formal logic to English as naturally as possible. Second, state whether the statement true or false (write the entire word) ; give brief justifications where appropriate for partial credit.
(a) $\exists n \in \mathbb{Z},(\exists s \in \mathbb{Z}, n=2 s) \wedge(\exists t \in \mathbb{Z}, n=2 t+1)$
(b) $\forall x \in \mathbb{R}, \exists y \in \mathbb{R}, x+y<0$
(c) $\exists y \in \mathbb{R}, \forall x \in \mathbb{R}, x+y<0$
(d) $\forall m \in \mathbb{N}, \exists n \in \mathbb{N}, n \geq m \wedge\left(\forall k \in \mathbb{N}, 1<k<n \Rightarrow \frac{n}{k} \notin \mathbb{N}\right)$
7. [3 parts, 3 points each] Negate each sentence below in English as naturally as possible.
(a) Some integer is both a perfect square and a perfect cube.
(b) Every set of real numbers has a positive real number as a member.
(c) For each nonempty set A of real numbers, if $a \leq 100$ for each $a \in A$, then there exists $M \in A$ such that $b \leq M$ for each $b \in A$.
8. [8 points] Prove that if n is an odd integer, then $n^{2}-1$ is a multiple of 4 .
9. [2 parts, 8 points each] A two-step proof. In both parts, let a, b, and d be integers.
(a) Prove that if $d \mid b$ and $d \mid a+b$, then $d \mid a$.
(b) Use part (a) to show that if $d \mid a n+b$ for each $n \in \mathbb{Z}$, then $d \mid a$ and $d \mid b$.

