Name:

Directions: Solve the following problems. Give supporting work/justification where appropriate.

1. [9 parts, 2 points each] Decide whether the following are true or false. Indicate your answer by writing the entire word. No justification required.

 $A = \{(1,3), \{1,3\}\}$ $B = \{1,3\}$ $C = \{\{3,1\}\}$ $D = \{(3,1)\}$ $E = \{\{\{1,3\}\}\}$

(a) $3 \in B$

(d) $B \in C$

(b) $3 \in C$

(e) $3 \subseteq B$

(h) $A \subseteq D$

(c) $B \in A$

(f) $B \subseteq C$

(i) $C \subseteq E$

2. [2 parts, 3 points each] Sketch the following sets in the plane.

(a) $(1,3) \times [-1,1)$

(b) $\{(x,y) \in \mathbb{R}^2 : x < 1 \text{ or } y < 1\}$

3. [6 parts, 3 points each] Express each set by listing the elements between braces.

 $A = \{\{\}, 2, \{1\}, \{2, 2\}\} \quad B = \{\{1, 1\}, \{2, 3\}, (2, 3), 2\} \quad C = \{\{2\}, \{3, 2\}, \varnothing\} \quad D = \{\varnothing, \{1, 2\}, \{2, 3\}, (3, 2)\}$

(a) $A \cap B$

(d) $(C-A)\times C$

(b) $B \cap C$

(e) $\mathcal{P}(C \cap D)$

(c) $(B \cup C) - A$

(f) $A \cap \mathcal{P}(\mathbb{Z})$

- 4. [3 parts, 4 points each] Give an example of a set with the following properties or explain why no such set exists.
 - (a) A set $A \subseteq \mathbb{N}$ such that A and \overline{A} are both infinite.
 - (b) A set $B \subseteq \mathbb{Z}$ such that every integer in B is positive and every integer in B is negative.
 - (c) A finite set C such that $\mathcal{P}(C)$ is infinite.

- 5. [4 parts, 3 points each] Give Venn Diagrams for each of the following sets relative to a universe U.
 - (a) $(A \cup B) \cap C$

(c) A - (B - C)

(b) $(A \cup B \cup C) - (A \cap C)$

(d) $\overline{A \cap B} \cup \overline{B \cap C}$

6. [5 points] Give two examples of an infinite set A such that $A \in \mathcal{P}(\mathcal{P}(\mathbb{R}))$.

7. [5 points] Use Venn Diagrams to decide if the equation $(A - B) - C = A \cap \overline{B} \cap \overline{C}$ is valid for all sets A, B, and C.

- 8. [3 parts, 6 points each] Let $I = \{\alpha \in \mathbb{R} \colon \alpha > 0\}$ and let $D_{\alpha} = \{(x,y) \in \mathbb{R}^2 \colon y \geq \alpha |x|\}$. Note that |x| is the absolute value of x, so that |x| = x when $x \geq 0$ and |x| = -x when x < 0.
 - (a) Sketch the example sets $D_{1/2}$, D_1 , and D_2 .

(b) Sketch $\bigcap_{\alpha \in I} D_{\alpha}$.

(c) Sketch $\bigcup_{\alpha \in I} D_{\alpha}$.

9. [6 points] Express the shaded portion of the following Venn diagram as a set by applying elementary set operations to A, B, and C.

