Name: \qquad
Directions: Solve the following problems. Give supporting work/justification where appropriate.

1. [9 parts, 2 points each] Decide whether the following are true or false. Indicate your answer by writing the entire word. No justification required.

$$
A=\{(1,3),\{1,3\}\} \quad B=\{1,3\} \quad C=\{\{3,1\}\} \quad D=\{(3,1)\} \quad E=\{\{\{1,3\}\}\}
$$

(a) $3 \in B$
(b) $3 \in C$
(c) $B \in A$
(d) $B \in C$
(e) $3 \subseteq B$
(f) $B \subseteq C$
(g) $C \subseteq A$
(h) $A \subseteq D$
(i) $C \subseteq E$
2. [$\mathbf{2}$ parts, $\mathbf{3}$ points each] Sketch the following sets in the plane.
(a) $(1,3) \times[-1,1)$
(b) $\left\{(x, y) \in \mathbb{R}^{2}: x<1\right.$ or $\left.y<1\right\}$
3. [6 parts, 3 points each] Express each set by listing the elements between braces.

$$
A=\{\{ \}, 2,\{1\},\{2,2\}\} \quad B=\{\{1,1\},\{2,3\},(2,3), 2\} \quad C=\{\{2\},\{3,2\}, \varnothing\} \quad D=\{\varnothing,\{1,2\},\{2,3\},(3,2)\}
$$

(a) $A \cap B$
(b) $B \cap C$
(c) $(B \cup C)-A$
(d) $(C-A) \times C$
(e) $\mathcal{P}(C \cap D)$
(f) $A \cap \mathcal{P}(\mathbb{Z})$
4. [3 parts, 4 points each] Give an example of a set with the following properties or explain why no such set exists.
(a) A set $A \subseteq \mathbb{N}$ such that A and \bar{A} are both infinite.
(b) A set $B \subseteq \mathbb{Z}$ such that every integer in B is positive and every integer in B is negative.
(c) A finite set C such that $\mathcal{P}(C)$ is infinite.
5. [4 parts, 3 points each] Give Venn Diagrams for each of the following sets relative to a universe U.
(a) $(A \cup B) \cap C$
(c) $A-(B-C)$
(b) $(A \cup B \cup C)-(A \cap C)$
(d) $\overline{A \cap B} \cup \overline{B \cap C}$
6. [5 points] Give two examples of an infinite set A such that $A \in \mathcal{P}(\mathcal{P}(\mathbb{R}))$.
7. [5 points] Use Venn Diagrams to decide if the equation $(A-B)-C=A \cap \bar{B} \cap \bar{C}$ is valid for all sets A, B, and C.
8. [3 parts, 6 points each] Let $I=\{\alpha \in \mathbb{R}: \alpha>0\}$ and let $D_{\alpha}=\left\{(x, y) \in \mathbb{R}^{2}: y \geq \alpha|x|\right\}$. Note that $|x|$ is the absolute value of x, so that $|x|=x$ when $x \geq 0$ and $|x|=-x$ when $x<0$.
(a) Sketch the example sets $D_{1 / 2}, D_{1}$, and D_{2}.
(b) Sketch $\bigcap_{\alpha \in I} D_{\alpha}$.
(c) Sketch $\bigcup_{\alpha \in I} D_{\alpha}$.
9. [6 points] Express the shaded portion of the following Venn diagram as a set by applying elementary set operations to A, B, and C.

