Name: Solutions
Directions: Solve the following problems. Give supporting work/justification where appropriate.

1. In each part, give a direct proof or a contrapositive proof.
(a) [4 points] Let $x, y \in \mathbb{Z}$. Prove that if $x y$ is even, then x is even or y is even.

We prove the contrapositive: If x is odd and y is odd, then $x y$ is odd. Suppose that x and y are odd. We have that $x=2 k+1$ and $y=2 \ell+1$ for sane $k, l \in \mathbb{Z}$. We compute

$$
\begin{aligned}
x y=(2 k+1)(2 l+1) & =4 k l+2 k+2 l+1 \\
& =2(2 k l+k+l)+1
\end{aligned}
$$

Since $2 k l+k+l \in \mathbb{Z}$, it follows that $x y$ is odd.
(b) [3 points] Let $a, b \in \mathbb{Z}$. Use part (a) to show that if $b \mid 2 a$ and b is odd, then $b \mid a$.

We give a direct proof. Suppose $b / 2 a$ and b is odd. Since $b / 2 a$, we have that $2 a=b k$ for sane $k \in \mathbb{Z}$. Since the product bk equals the even integer $2 a$, it follows from part (a) that b or k is even. Since b is odd, it must be that k is even. Therefore $k=2 t$ for same $t \in \mathbb{Z}$, and so $2 a=b k=b(2 t)=2 b t$. Dividing both sides by 2 gives $a=b t$. Since $t \in \mathbb{Z}$, we have that $b l a$.
2. [3 points] Let $a, a^{\prime}, b, b^{\prime} \in \mathbb{Z}$ and let $m \in \mathbb{N}$. Show that if $a \equiv a^{\prime}(\bmod m)$ and $b \equiv b^{\prime}$ $(\bmod m)$, then $a+a^{\prime} \equiv b+b^{\prime}(\bmod m)$.

Note: There is an error in the statement of this problem. As written, the statement is FALSE. To see this, take $a=a^{\prime}=0, b=b^{\prime}=1$, and $m=5$ (say). Now the hypotheses $(0 \equiv 0(\bmod 5), 1 \equiv 1(\bmod 5))$ are met, but the conclusion fats: $a+a^{\prime}=0, b+b^{\prime}=2$, but $0 \equiv 2(\operatorname{mo} 25)$ is clearly false.
The problem should have stated: If $a \equiv a^{\prime}(\bmod m)$ and $b \equiv b^{\prime}(\bmod m)$, then $a+b \equiv a^{\prime}+b^{\prime}(\bmod m)$.

Pf. Suppose $a \equiv a^{\prime}(\bmod m)$ ar $b \equiv b^{\prime}(\bmod m)$. Then by definition, we have $m \mid a-a^{\prime}$ and $m \mid b-b^{\prime}$, ant so $a-a^{\prime}=k, m$ al $b-b^{\prime}=k_{2} m$ for same $k_{1}, k_{2} \in \mathbb{Z}$. Adding these gives

$$
\left(a-a^{\prime}\right)+\left(b-b^{\prime}\right)=k_{1} m+k_{2} m
$$

which becanes $(a+b)-\left(a^{\prime}+b^{\prime}\right)=\left(k_{1}+k_{2}\right) m$ after rearranging terms. Since $k_{1}+k_{2} \in \mathbb{Z}$, we have that $m \mid(a+b)-\left(a^{\prime}+b^{\prime}\right)$ and so $a+b \equiv a^{\prime}+b^{\prime} \quad(\bmod m)$ by definition.

