Name: Solutions
Directions: Solve the following problems. Give supporting work/justification where appropriate.

1. [6 parts, 1 point each] We define the following statements and open sentences.

$$
\begin{array}{rlr}
P: 5 \text { is greater than } 8 .(\text { (False) } & Q(x): x \text { is odd. } \\
R(x): x \text { is negative. } & S(A): A \text { is a finite set. }
\end{array}
$$

Decide whether the following are true or false; indicate your answer by writing the entire word "true" or the entire word "false". Give brief justifications for partial credit.
(a) $\sim P$

Since P is false, $\sim P$ is true
(b) $\sim Q(4) \wedge \sim P$
$Q(4): 4$ is odd [fable] Since both $\sim Q(4)$ ad $\sim P$ are true, $\sim Q(4)$: true the statement is true.
(c) $\underset{\sim}{\sim} P \vee S(\mathbb{N})) \wedge(R(-1) \vee Q(8)) \quad \ldots \quad$ TRUE \wedge TRUE

So this statement is tie.
(d) $P \Longrightarrow 1=2$

FALSE FAlSE
Since the hypothesis is false, the implication is true
(e) $\sim(R(5) \Longleftrightarrow Q(6)) \quad \cdot R(5) \Longleftrightarrow Q(6)$ is true since both $R(5)$ at $Q(6)$ $\begin{array}{cc}\eta & 9 \\ \text { FAlse } & \text { FALSE } \\ \text { "5 is } \\ \text { negative" } & 6 \text { is odd" }\end{array}$ have the same troth value.

- So $\sim(R(5) \Leftrightarrow Q(6))$ is false.

$$
\text { (f) } \sim S(\{1,2,4,8,16,32, \ldots\}) \Longleftrightarrow(R(-1) \Longrightarrow Q(0))
$$

- $S(\{1,2,4, \ldots\}):\{1,2,4, \ldots\}$ os a finite set $(f a l s e)$, So $\sim S(\{1,2, \ldots\})$ is true.
- $R(-1) \Rightarrow Q(0)$. Since the hypatheois is true but the conclusion is false, the $\begin{array}{cc}\uparrow & \uparrow \\ & \uparrow<0\end{array} \quad 0$ is od
true false So, true \Longleftrightarrow false is a false biconditional statement.

2. [$\mathbf{2}$ parts, $\mathbf{1}$ point each] Truth tables and logical equivalence.
(a) Write a truth table for $(P \Longleftrightarrow Q) \Longrightarrow P$

P	Q	$P \Leftrightarrow Q$	$(P \Leftrightarrow Q) \Rightarrow P$	
T	T	T	T	$(T \Rightarrow T)$
T	F	F	T	$(F \Rightarrow T)$
F	T	F	T	$(F \Rightarrow F)$
F	F	T	F	$(T \Rightarrow F)$

(b) Give a simple statement which is logically equivalent to $(P \Longleftrightarrow Q) \Longrightarrow P$.

This statement is equivalent to $P \vee Q$.
3. [2 parts, 1 point each] Let P, Q, and R be statements. Use the standard logical operands $\sim, \vee, \wedge, \Longrightarrow, \Longleftrightarrow$ to express the following statements.
(a) P, Q, and R all have the same truth value.

$$
\begin{array}{ll}
P \Leftrightarrow Q \Leftrightarrow R \quad \text { or } P \Leftrightarrow(Q \Leftrightarrow R) \\
& \text { or } \quad(P \Leftrightarrow Q) \Leftrightarrow R
\end{array}
$$

(b) Q is a necessary condition for P, and R is a sufficient condition for P.

$$
(P \rightarrow Q) \wedge(R \Rightarrow P)
$$

Note: $(R \Rightarrow P) \Rightarrow Q$ and $R \Rightarrow(P \Rightarrow Q)$ are not equivalent, since both hold when R is true and P is false.

