. .

Directions: Solve the following problems. Give supporting work/justification where appropriate.

1. [6 parts, 1 point each] We define the following statements and open sentences.

$$P: 5$$
 is greater than 8. (For $Q(x): x$ is odd. $R(x): x$ is negative. $Q(x): A$ is a finite set.

.

Decide whether the following are true or false; indicate your answer by writing the entire word "true" or the entire word "false". Give brief justifications for partial credit.

(c)
$$(\sim P \lor S(\mathbb{N})) \land (R(-1) \lor Q(8))$$
 ... TRUE \land TRUE
True Fale
"N is a fuile "-1 is " "8 is old" So this statement is twe.

(d)
$$P \implies 1 = 2$$

FALSE FALSE

Since the hypothesis is false, the implication is true

(f) ~
$$S(\{1,2,4,8,16,32,\ldots\}) \iff (R(-1) \implies Q(0))$$

 $S(\{1,2,4,\ldots\}): \{1,2,4,\ldots\} \implies a finile set (false), So ~ S(\{1,2,\ldots\}) \implies true,$
 $R(-1) \implies Q(a)$ Since the hypothesis is true but the conclusion is filse, the
 $1 \qquad 1 \qquad \text{implication is false}$
 $T'-|<0'' \qquad 0 \text{ is odd}$
 $T''-|<0'' \qquad 0 \text{ is odd}$
 $So, +rue \iff false \qquad \text{is a false} \qquad \text{biconditional statement}.$

- 2. [2 parts, 1 point each] Truth tables and logical equivalence.
 - (a) Write a truth table for $(P \iff Q) \implies P$

P	Q	P ← Q	(P@Q) =	⇒P
T	T	Т	Ť	(T⇒T)
Т	F	F	Т	(F⇒T)
F	T	F	Т	(F=>F)
F	F	Π Τ	7	(T⇒ F)

- (b) Give a simple statement which is logically equivalent to $(P \iff Q) \implies P$.
- This statement is equivalent to PVQ.
- 3. [2 parts, 1 point each] Let P, Q, and R be statements. Use the standard logical operands $\sim, \lor, \land, \Longrightarrow$, \iff to express the following statements.
 - (a) P, Q, and R all have the same truth value.

$$P \Leftrightarrow Q \Leftrightarrow R$$
 or $P \Leftrightarrow (Q \Leftrightarrow R)$
or $(P \Leftrightarrow Q) \Leftrightarrow R$

(b) Q is a necessary condition for P, and R is a sufficient condition for P.

$$(P \Rightarrow Q) \land (R \Rightarrow P)$$

Note: $(R \Rightarrow P) \Rightarrow Q$ and $R \Rightarrow (P \Rightarrow Q)$ are not equivalent, since both
hold when R is true and P is false.