Name: Solutions
Directions: Solve the following problems. Give supporting work/justification where appropriate.

1. [4 points] Let A and B be sets. Prove that $A \subseteq B$ if and only if $A \cup B=B$.
\Leftrightarrow Suppose $A \subseteq B$. We show that $A \cup B=B$. First, we argue $A \cup B \subseteq B$. Let $x \in A \cup B$. This means $x \in A$ or $x \in B$. If $x \in A$, then $A \in B$ implies $x \in B$ abs. In the other case, $x \in B$ diréctly. Since each element in $A \cup B$ is in B, we have $A \cup B \subseteq B$. Next, we argue $A \cup B \supseteq B$. let $x \in B$. since $x \in A$ or $x \in B$, we have $x \in A \cup B$. If follows tat $B \subseteq A \cup B$. Since $A \cup B \subseteq B$ an $A \cup B \geq B$, we have that $A \cup B=B$.
(\Leftarrow) Suppers that $A \cup B=B$. We show that $A \subseteq B$. let $x \in A$. We have $x \in A$ or $x \in B$, an so $x \in A \cup B$. Since $A \cup B=B$ an $x \in A \cup B$, it follows that $x \in B$. Since each element in A a bo in B, we have $A \subseteq B$.
2. [3 points] Prove or disprove: Let A and B be sets. We have $(A \times B) \cup(B \times A)=(A \cup B) \times$ $(A \cup B)$.

Disproof. Let $A=\{1\}$ at $B=\varnothing$. Note that $A \times B=B \times A=\varnothing$, and so $(A \times B) \cup(B \times A)=\varnothing \cup \varnothing=\varnothing$. On the other hand, $A \cup B=\{1\}$ and so $(A \cup B) \times(A \cup B)=\{1\} \times\{1\}=\{(1,1)\}$. Since $(A \times B) \cup(B \times A) \neq(A \cup B) \times(A \cup B)$, this A at B form a canter-exaple,
3. [3 points] Prove or disprove: Let A and B be sets. We have $(A \times B) \cap(B \times A)=(A \cap B) \times$ $(A \cap B)$.

Proof. (\&) Suppose $(x, y) \in(A \times B) \cap(B \times A)$. We have $(x, y) \in A \times B$ al $(x, y) \in B \times A$. Since $(x, y) \in A \times B$, this means $x \in A$ al $y \in B$. Since $(x, y) \in B \times A$, this means $x \in B$ ar $y \in A$. Since $x \in A$ al $x \in B$, we have $x \in A \cap B$.
Similarly, since $y \in B \subset y \in A$, we have $y \in A \cap B$. Therefore $(x, y) \in(A \cap B) \times(A \cap B)$. If follows that $(A \times B) \cap(B \times A) \leq(A \cap B) \times(A \cap B)$.
(2). Supper $(x, y) \in(A \cap B) \times(A \cap B)$. We have $x \in A \cap B$ al $y \in A \cap B$. B follows that $x \in A, x \in B, y \in A$, al $y \in B$. Hence $(x, y) \in A \times B$ al $(x, y) \in B \times A$. Therefore $(x, y) \in(A \times B) \cap(B \times A)$. Since each element in $(A \cap B) \times(A \cap B)$ is also in $(A \times B) \cap(B \times A)$, it follows that $(A \times B) \cap(B \times A) \geq(A \cap B) \times(A \cap B)$.

