Name: Solutions

Directions: Solve the following problems. Give supporting work/justification where appropriate.

- 1. [4 points] Let A and B be sets. Prove that $A \subseteq B$ if and only if $A \cup B = B$.
- E) Suppose $A \in B$. We show that $A \cup B = B$. First, we argue $A \cup B \subseteq B$.

 Let $X \in A \cup B$. This means $X \in A$ or $X \in B$. If $X \in A$, thun $A \subseteq B$ implies $X \in B$ also. In the other case, $X \in B$ directly. Since each element in $A \cup B$ is in B, we have $A \cup B \subseteq B$. Next, we argue $A \cup B \supseteq B$. Let $X \in B$.

 Since $X \in A$ or $X \in B$, we have $X \in A \cup B$. If follows that $B \subseteq A \cup B$. Since $A \cup B \subseteq B$ and $A \cup B \supseteq B$, we have $A \cup B \supseteq B$.
- (\Leftarrow) Suppose that $A \lor B = B$. We show that $A \subseteq B$. Let $X \not\in A$. We have $X \not\in A$ or $X \not\in B$, and so $X \not\in A \lor B$. Since $A \lor B = B$ and $X \not\in A \lor B$, it follows that $X \not\in B$. Since each element in $A \ni abo$ in B, we have $A \subseteq B$.

2. [3 points] Prove or disprove: Let A and B be sets. We have $(A \times B) \cup (B \times A) = (A \cup B) \times (A \cup B)$.

Disproof. Let
$$A = \{i\}$$
 and $B = \emptyset$. Note that $A \times B = B \times A = \emptyset$, and so $(A \times B) \cup (B \times A) = \emptyset \cup \emptyset = \emptyset$. On the other hand, $A \cup B = \{i\}$ and so $(A \cup B) \times (A \cup B) = \{i\} \times \{i\} = \{(i,i)\}$. Since $(A \times B) \cup (B \times A) \neq (A \cup B) \times (A \cup B)$, this $A \cap B$ form a comfultable,

3. [3 points] Prove or disprove: Let A and B be sets. We have $(A \times B) \cap (B \times A) = (A \cap B) \times (A \cap B)$.

Proof. (2) Suppose $(x,y) \in (A \times B) \cap (B \times A)$. We have $(x,y) \in A \times B \supseteq (x,y) \in B \times A$.

Since $(x,y) \in A \times B$, this means $x \in A \supseteq y \in B$. Since $(x,y) \in B \times A$, this means $x \in B \supseteq y \in A$. Since $x \in A \supseteq x \in B$, we have $x \in A \cap B$.

Similarly, since $y \in B \supseteq y \in A$, we have $y \in A \cap B$. Therefore $(x,y) \in (A \cap B) \times (A \cap B)$.

If follows that $(A \times B) \cap (B \times A) \subseteq (A \cap B) \times (A \cap B)$.

(2). Suppose $(x,y) \in (A \cap B) \times (A \cap B)$. We have $x \in A \cap B$ all $y \in A \cap B$. If follows that $x \in A$, $x \in B$, $y \in A$, all $y \in B$. Hence $(x,y) \in A \times B$ all $(x,y) \in B \times A$. Therefore $(x,y) \in (A \times B) \cap (B \times A)$. Since each element in $(A \cap B) \times (A \cap B)$ is also in $(A \times B) \cap (B \times A)$, it follows that $(A \times B) \cap (B \times A) \geq (A \cap B) \times (A \cap B)$.