Name: Solutions

Directions: Solve the following problems. Give supporting work/justification where appropriate.

1. [3 points] Let $a \in \mathbb{R}$. Prove that if a^3 is irrational, then a is irrational.

We prove the contrapositive: if a is rational, then as is rational. Suppose a is rational. This means that $\alpha = \frac{1}{5}$ for some $r, s \in \mathbb{Z}$ with $s \neq 0$. If follows that $a^3 = (\frac{1}{5})^3 = \frac{r^3}{5^3}$. Since $r^3, s^3 \in \mathbb{Z}$, it follows that $a^3 = rational$.

2. [3 points] Let $a, b \in \mathbb{Z}$ with b > 0. Prove that there is at most one pair of integers (q, r) such that a = bq + r and $0 \le r < b$.

Suppose that
$$(g_1, r_1) \rightarrow (g_2, r_2)$$
 satisfy the given carditians,
namely that $a = bg_1 + r_1$, and $a = bg_2 + r_2$ with $0 \le r_1, r_2 < b$.
We show that $g_1 = g_2 \rightarrow r_1 = r_2$, which implies that at most are
such pair of integers exist. Note that $bg_1 + r_1 = a = bg_2 + r_2$, and it
follows that $b(g_1 - g_2) = r_2 - r_1$. Since $g_1 - g_2 \in \mathbb{Z}$, we have that $b[r_2 - r_1,$
or equivalently, $r_2 - r_1$ is a multiple of b. Since $r_2 \le b - 1$ and $r_1 \ge 0$, we
have $r_2 - r_1 \ge b - 1$. Also, Since $r_2 \ge 0 \Rightarrow r_1 \le b - 1$, we have $r_2 - r_1 \ge -(b - 1)$.
So $r_2 - r_1$ is a multiple of b in the set $g_2 - (b - 1), \dots, 0, \dots, b + 1g_1$. We
conclude that $r_2 - r_1 = 0$, and so $r_1 = r_2$. From $b(g_1 - g_2) = (r_2 - r_1 = 0)$ we
may divide by b since $b \ne 0$ to obtain $g_1 - g_2 = 0$. It follows that $g_1 - g_2 = R_2$

(b) [1 point] Fill in the blank to make the following statement true: There exists a unique $x \in \mathbb{R}$ such that f(x) = g(x) if and only if $\Delta \neq \mathcal{L}$.

Note: If $a \neq c$, then care $i \neq (e)$ direction shows that $x = \frac{d-b}{a-c}$ is the unique soln. If a = c, then there are either infinitely many solus (b=d) or no solus (b≠d).