Name: Solutions
Directions: Solve the following problems. Give supporting work/justification where appropriate.

1. [3 points] Let $a \in \mathbb{R}$. Prove that if a^{3} is irrational, then a is irrational.

We prove the contrapositive: if a is rational, then a^{3} is rational.
Suppose a is rational. This means that $a=\frac{r}{s}$ for save $r, s \in \mathbb{Z}$ with $s \neq 0$. It follows that $a^{3}=\left(\frac{r}{s}\right)^{3}=\frac{r^{3}}{s^{3}}$. Since $r^{3}, s^{3} \in \mathbb{Z}$, it follows that a^{3} is rational.
2. [3 points] Let $a, b \in \mathbb{Z}$ with $b>0$. Prove that there is at most one pair of integers (q, r) such that $a=b q+r$ and $0 \leq r<b$.
Suppose that $\left(q_{1}, r_{1}\right)$ al $\left(q_{2}, r_{2}\right)$ satisfy the given conditions, namely that $a=b q_{1}+r_{1}$ and $a=b q_{2}+r_{2}$ with $0 \leq r_{1}, r_{2}<b$. We show that $q_{1}=q_{2}$ ad $r_{1}=r_{2}$, which implies that at most are such pair of integers exist. Note that $b q_{1}+r_{1}=a=b q_{2}+r_{2}$, and it follows that $b\left(q_{1}-q_{2}\right)=r_{2}-r_{1}$. Since $q_{1}-q_{2} \in \mathbb{Z}$, we have that $b \mid r_{2}-r_{1}$, or equivalently, $r_{2}-r_{1}$ is a multiple of b. Since $r_{2} \leq b-1$ ad $r_{1} \geq 0$, we have $r_{2}-r_{1} \leq b-1$. Also, Since $r_{2} \geq 0$ ad $r_{1} \leq b-1$, we have $r_{2}-r_{1} \geq-(b-1)$. So $r_{2}-r_{1}$ is a multiple of b in the set $\{-(b-1), \ldots, 0, \ldots, b+1\}$. We conclude that $r_{2}-r_{1}=0$, and so $r_{1}=r_{2}$. Fran $b\left(q_{1}-q_{2}\right)=r_{2}-r_{1}=0$, we may divide by b since $b \neq 0$ to obtain $q_{1}-q_{2}=0$. It follows that $q_{1}=q_{2}$.
3. Let $a, b, c, d \in \mathbb{R}$, let $f(x)=a x+b$, and let $g(x)=c x+d$.
(a) [3 points] Show that there exists $x \in \mathbb{R}$ such that $f(x)=g(x)$ if and only if $a \neq c$ or $d=b$.
(\Rightarrow) Suppose that there exists $x \in \mathbb{R}$ such that $f(x)=g(x)$. Choose $x_{0} \in \mathbb{R}$ such that $a x_{0}+b=c x_{0}+d$. Rearranging gives $(a-c) x_{0}=d-b$. If $a \neq c$, then the conclusion is satisfied. Otherwise $a=c$ and we have $d-b=(a-c) x_{0}=0 \cdot x_{0}=0$, which implies $b=d$. In both cases, $a \neq c$ or $b=d$.
(\leftarrow). Suppose $a \neq c$ or $d=b$. We show that $f(x)=g(x)$ for some $x \in \mathbb{R}$.
Note that $f(x)=g(x)$ is equivalent to $a x+b=c x+d$, which os equivalent to $(a-c) x=d-b$. We consider two cases.
CAse 1: If $a \neq c$, then we have $(a-c) x=d-b$ when $x=\frac{d-b}{a-c}$. Hence $f(x)=g(x)$ when $x=\frac{d-b}{a-c}$, and it follows that $f(x)=g(x)$ for save $x \in \mathbb{R}$
Case 2: If $d=b$, then we have $(a-c) x=d-b=0$ when $x=0$. So $f(x)=g(x)$ for sine $x \in \mathbb{R}$.

In both cases, there exists $x \in \mathbb{R}$ such That $f(\infty)=g(x)$.
(b) [1 point] Fill in the blank to make the following statement true: There exists a unique $x \in \mathbb{R}$ such that $f(x)=g(x)$ if and only if \qquad $a \neq c$.
Note: If $a \neq c$, then care 1 of (\Leftrightarrow) direction shows that $x=\frac{d-b}{a-c}$ is the unique soln. If $a=c$, then there are either infinitely many solus $(b=d)$ or no solus $(b \neq d)$.

