Name: Solutions
Directions: Solve the following problems. Give supporting work/justification where appropriate.

1. [2 parts, $\mathbf{1}$ point each] Express the following sets using a list between braces, using the ellipses if necessary.
(a) $\{3 n-1: n \in \mathbb{Z}$ and $|n| \leq 3\}$

(b) $\left\{(x, y): x, y \in \mathbb{Z}\right.$ and $\left.x^{2}+y^{2}=1\right\}$

$$
=\{(1,0),(0,1),(-1,0),(0,-1)\}
$$

2. [4 parts, 1 point each] Determine whether the following sets are infinite or finite. If the set is finite, then determine its cardinality.
(a) $\{1,\{1\},\{\{1\}\},\{\{\{1\}\}\}, \ldots\}$

Infinite
(b) $\{\mathbb{R}\}$

Since $\{\mathbb{R}\}$ is the singleton set whose only member is the set \mathbb{R} of real numbers, $|\{\mathbb{R}\}|=1$.
(c) $\left\{x \in \mathbb{R}: x^{2}=1\right\}$

$$
\begin{aligned}
& x^{2}=1 \Leftrightarrow x^{2}-1=6 \\
& \Longleftrightarrow \\
&(x-1)(x+1)=0 \\
& x=1, x=-1
\end{aligned}
$$

(d)

So the set equals $\{-1,1\}$
a) has size 2 .

This set contains 3 integers and are set $(\{1,2\}=\{2,1,2\})$, ad so it has size 4 .
3. [2 parts, $\mathbf{1}$ point each] Use set-builder notation to express the following sets compactly.
(a) $\left\{\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \ldots\right\}=\left\{\frac{n-1}{n}: n \in \mathbb{Z}\right.$ as $\left.n \geq 2\right\}$
(b) The set of all points (x, y) in the interior of the triangle with vertices $(0,0),(1,1)$, and

$$
\left\{(x, y) \in \mathbb{R}^{2}: 0<x<1 \text { and } 0<y<x\right\}
$$

4. [2 points] Use set-builder notation to express the subset of \mathbb{R}^{2} displayed below.

$$
\left\{(x, y) \in \mathbb{R}^{2}: \quad x^{2}+y^{2} \leq 1 \quad \text { and } y>0\right\}
$$

