Directions: You may work to solve these problems in groups, but all written work must be your own. Unless the problem indicates otherwise, all problems require some justification; a correct answer without supporting reasoning is not sufficient. See "Guidelines and advice" on the course webpage for more information.

1. Proof critiques. Give a critique of each claimed proof below. A proof critique addresses the following questions: (1) Is the proof correct? (2) If correct, can the proof be improved in some way? (3) If incorrect, what is/are the error(s)? Can they be fixed, and if so, how?
(a) Theorem 1. If x and y are real numbers, then $\frac{x+y}{2} \geq \sqrt{x y}$.

Proof:

$$
\begin{aligned}
\frac{x+y}{2} & \geq \sqrt{x y} \\
x+y & \geq 2 \sqrt{x y} \\
(x+y)^{2} & \geq 4 x y \\
x^{2}+2 x y+y^{2} & \geq 4 x y \\
x^{2}-2 x y+y^{2} & \geq 0 \\
(x-y)^{2} \geq 0 &
\end{aligned}
$$

(b) Theorem 2. All real numbers are equal.

Proof: Let x and y be real numbers. Observe that

$$
x^{2}-y^{2}=(x-y)(x+y)=x(x+y)-y(x+y) .
$$

After rearranging terms, this becomes $x^{2}-x(x+y)=y^{2}-y(x+y)$. Adding $\frac{(x+y)^{2}}{4}$ to both sides gives $x^{2}-x(x+y)+\frac{(x+y)^{2}}{4}=y^{2}-y(x+y)+\frac{(x+y)^{2}}{4}$. Factoring both sides, we see that $\left(x-\frac{x+y}{2}\right)^{2}=\left(y-\frac{x+y}{2}\right)^{2}$ and taking the square root gives $x-\frac{x+y}{2}=y-\frac{x+y}{2}$. Adding $\frac{x+y}{2}$ to both sides gives $x=y$. Since x and y were arbitrarily chosen real numbers, it follows that all real numbers are equal.
(c) Theorem 3. If $n \in \mathbb{Z}$, then $n^{2}=3 k$ or $n^{2}=3 k+1$ for some $k \in \mathbb{Z}$.

Proof: Suppose that $n \in \mathbb{Z}$. By the division algorithm, it follows that $n=3 q+r$ for some integers q and r with $0 \leq r<3$. Since r is an integer and $0 \leq r<3$, it follows that $r \in\{0,1,2\}$. We consider three cases, depending on the value of r.

Case 1: If $r=0$, then $n^{2}=(3 q+0)^{2}=9 q^{2}=3\left(3 q^{2}\right)$, and so $n^{2}=3 k$ when we set k equal to the integer $3 q^{2}$.

Case 2: If $r=1$, then $n^{2}=(3 q+1)^{2}=9 q^{2}+6 q+1=3\left(3 q^{2}+2 q\right)+1$, and so $n^{2}=3 k+1$ when we set k equal to the integer $3 q^{2}+2 q$.

Case 3: If $r=2$, then $n^{2}=(3 q+2)^{2}=9 q^{2}+12 q+4=3\left(3 q^{2}+4 q+1\right)+1$, and so $n^{2}=3 k+1$ when we set k equal to the integer $3 q^{2}+4 q+1$.
In all cases, we have that $n^{2}=3 k$ or $n^{2}=3 k+1$ for some integer k.
(d) Theorem 4. Let $a, b, c \in \mathbb{Z}$. If $a \mid b$ and $b \mid c$, then $a \mid c$.

Proof: Since $a \mid b$, we have that $b=k a$ for some integer k. Similarly, since $b \mid c$, it follows that $c=k b$ for some integer k. Therefore $c=k b=k(k a)=k^{2} a$. Since k^{2} is an integer, it follows that $a \mid c$.
2. Use the method of direct proof to prove the following.
(a) Suppose a is an integer. If $7 \mid 4 a$, then $7 \mid a$. Hint: consider the equation $a=8 a-7 a$.
(b) Suppose a, b, and c are integers. If $a^{2} \mid b$ and $b^{3} \mid c$, then $a^{6} \mid c$.
(c) If $x \in \mathbb{R}$ and $0<x<4$, then $\frac{4}{x(4-x)} \geq 1$.
(d) Every odd integer is a difference of two squares. (Example: $7=4^{2}-3^{2}$).

