Directions: You may work to solve these problems in groups, but all written work must be your own. Unless the problem indicates otherwise, all problems require some justification; a correct answer without supporting reasoning is not sufficient. See "Guidelines and advice" on the course webpage for more information.

1. Prove that if x is an odd integer, then x^{3} is odd.
2. Prove that if x and y are integers and x is even, then $x y$ is even.
3. Prove that if $n \in \mathbb{Z}$, then $5 n^{2}+3 n+7$ is odd. Hint: try cases.
4. An integer p is prime if $p \geq 2$ and the only positive divisors of p are 1 and p. Prove that if n is a positive integer, $n \geq 2$, and n is not prime, then $2^{n}-1$ is not prime.
