Directions: You may work to solve these problems in groups, but all written work must be your own. Unless the problem indicates otherwise, all problems require some justification; a correct answer without supporting reasoning is not sufficient. See "Guidelines and advice" on the course webpage for more information.

1. For each $n \in \mathbb{N}$, let $A_{n}=\{2 n, 2 n+1, \ldots, 3 n\}$.
(a) Find $\bigcup_{z=15}^{20} A_{z}$ and $\bigcap_{s=15}^{20} A_{s}$.
(b) Suppose that $a, b \in \mathbb{N}$ and $a \leq b$. Find $\left|\bigcup_{k=a}^{b} A_{k}\right|$ in terms of a and b.
2. [BP 1.8. $\{6,8,10\}]$ Recall that for real numbers a and b, we have $[a, b]=\{x \in \mathbb{R}: a \leq x \leq b\}$. Find the following sets.
(a) $\bigcup_{i \in \mathbb{N}}[0, i+1]$
(d) $\bigcap_{\alpha \in \mathbb{R}}(\{\alpha\} \times[0,1])$
(b) $\bigcap_{i \in \mathbb{N}}[0, i+1]$
(e) $\bigcup_{x \in[0,1]}\left([x, 1] \times\left[0, x^{2}\right]\right)$
(c) $\bigcup_{\alpha \in \mathbb{R}}(\{\alpha\} \times[0,1])$
(f) $\bigcap_{x \in[0,1]}\left([x, 1] \times\left[0, x^{2}\right]\right)$
3. For each $k \in \mathbb{N}$, let $A_{k}=\{k n: n \in \mathbb{Z}\}$. Find the following sets.
(a) The examples A_{1}, A_{2}, and A_{3}.
(d) $\bigcap_{k=1}^{3} A_{k}$
(b) $\bigcup_{k=1}^{3} A_{k}$
(e) $\bigcap_{k=1}^{\infty} A_{k}$
(c) $\bigcup_{k=2}^{4} A_{k}$
(f) $\bigcup_{k \in I} A_{k}$ where $I=\{3,5,7,9,11, \ldots\}$.
4. [BP 2.1,evens] Decide whether or not the following are statements. In the case of a statement, say if it is true or false, if possible.
(a) Every even integer is a real number.
(b) Sets \mathbb{Z} and \mathbb{N}.
(c) Some sets are finite.
(d) $\mathbb{N} \notin \mathcal{P}(\mathbb{N})$.
(e) $(\mathbb{R} \times \mathbb{N}) \cap(\mathbb{N} \times \mathbb{R})=\mathbb{N} \times \mathbb{N}$.
(f) If the integer x is a multiple of 7 , then it is divisible by 7 .
(g) Call me Ishmael.
(h) If x is an integer, then $x+y$ is also an integer.
5. An infinite series of nested circles and squares are drawn, all sharing a common center point. The outermost circle has radius 1. The space between each circle and the square it circumscribes is shaded. What is the total area of the shaded regions?

