Name: Solutions
Directions: Show all work. No credit for answers without work.

1. [12 points] Solve the following system of congruences.

$$
\begin{aligned}
7,11,23: \text { all prime. } & M & =7 \cdot 11 \cdot 23 \\
x \equiv 10(\bmod 23) & & =1771
\end{aligned}
$$

$$
\begin{array}{ll}
7=(2)(3)+1 & (-2)(3 x)=-10(\operatorname{md} 7) \\
1=7+(-2)(3) & -6 x \equiv 4 \bmod 7
\end{array}
$$

$$
x \equiv 6 \quad(\bmod 11)
$$

$$
\begin{array}{rlrl}
11=(1)(7)+4 & 1 & =4+(-1)(3) \\
7 & =(1)(4)+3 & & =4+(-1)(7+(-1)(4)) \\
4=(1)(3)+1 & & =(2)(4)+(-1)(7) \\
& =(2)[11+(-1)(7)]+(-1)(7) \\
& & =(2)(11)+((-3))(7) \\
x_{i} * & \text { So } x & =(253)(1)(4)+(161)(-3)(6)+(7)(3)(10) \\
6 & & =424 \text { mod } 1771
\end{array}
$$

2. [12 points] Note that 73 is prime. Solve for x in $x^{49} \equiv 50(\bmod 73)$

$$
\begin{aligned}
& E E A(49, \phi(73)=E E A(49,72) \\
& 72=(1)(49)+23 \\
& 49=(2)(23)+3 \\
& 23=(7)(3)+2 \\
& 3=(1)(2)+1 \\
& 1=3+(-1)(2) \\
& =3+(-1)(23+(-7)(3)) \\
& =(8)(3)+(-1)(23)
\end{aligned}
$$

$$
\begin{aligned}
& =(8)[49+(-2)(23)]+(-1)(23) \\
& =(8)(49)+(-17)(23) \\
& =(8)(49)+(-17)[72+(-1)(49)] \\
& =(25)(49)+(-17)(72) .
\end{aligned}
$$

So 49^{-1} in \mathbb{Z}_{72} is 25 .

$$
\begin{gathered}
\left(x^{49}\right)^{25} \equiv(50)^{25}(\bmod 73) \\
x \equiv(50)^{25}(\bmod 73)
\end{gathered}
$$

Fist power in \mathbb{Z}_{73}

$$
\begin{aligned}
& 50^{2}=18 \\
& 50^{4}=(18)^{2}=32 \\
& 50^{8}=(32)^{2}=2 \\
& 50^{16}=2^{2}=4
\end{aligned}
$$

$$
\begin{aligned}
25 & =16+8+1 \\
x \equiv 50^{25} & \equiv 50^{16} \cdot 50^{8} \cdot 50 \\
& \equiv 4 \cdot 2 \cdot 50 \equiv 400 \equiv 35
\end{aligned}
$$

3. [6 points] True or False: Let $a, b, m_{1}, m_{2} \in \mathbb{Z}$. If $m_{1} \neq m_{2}$, then the system

$$
x \equiv a \quad\left(\bmod m_{1}\right) \quad x \equiv b \quad\left(\bmod m_{2}\right)
$$

has a unique solution modulo M, where $M=m_{1} m_{2}$. If True, then explain why, citing a theorem from class if appropriate. If False, then give a counter-example.
This is false. For example, $x \equiv 0(\bmod 4)$ but $x \equiv 1(\bmod 2)$
has no soln since x cannot be both odd an a multiple of 4.
Note: For CRT to apply, the moduli m_{1}, m_{2} must be relatively prime.
4. [2 parts, 15 points each] Bob generates an RSA key pair with $N=p q=37 \cdot 131=4847$ and $e=17$.
(a) What is Bob's private key?

$$
\left.\left.\begin{array}{l}
N^{\prime}=(p-1)(q-1)=36 \cdot 130=4680 \\
d=e^{-1} \text { in } \mathbb{Z} N^{\prime} \\
E E A(17,4680) \\
4680=(275)(17)+5 \\
17=(3)(5)+2 \\
5
\end{array}\right)=(2)(2)+1\right)
$$

$$
\begin{aligned}
1 & =5+(-2)(2) \\
& =5+(-2)[17+(-3)(5)] \\
& =(7)(5)+(-2)(17) \\
& =(7)[4680+(-275)(17)]+(-2)(17) \\
& =(7)(4680)+(-1927)(17)
\end{aligned}
$$

So $d \equiv-1927 \equiv 2753 \bmod N^{\prime}$
ad Bob's private bey is $(4847,2753)$
(b) Alice wishes to encrypt and send Bob the message $m=90$. What should he send?

$$
\begin{aligned}
c & =m^{e}(\bmod N) \\
& =(90)^{17} \bmod 4847 \\
(90)^{2} & =3253 \\
(90)^{4} & =(3253)^{2}=1008 \\
(90)^{8} & =(1008)^{2}=3041
\end{aligned}
$$

5. [6 points] What is the main advantage of the Miller-Rabin primality test over the Fermat primality test? Be specific.

The Miller - Rabin teot can defect that the Carmichad numbers
are composite, Whereas the Fermat test will probably incorrectly say These numbers are prime.
6. [6 points] Suppose we try to generate a roughly 1525 -bit prime by selecting random numbers from the set $\left\{1, \ldots, 2^{1525}\right\}$ until we happen to pick a prime number. On average, how many numbers will we need to pick before we find a prime?

- From prine \# theorem, \#primis in $\left\{1, \ldots, 2^{1525}\right\} \approx \frac{2^{1525}}{\ln \left(2^{1525}\right)}$
- So chances of picking a prime at randon $\approx \frac{1}{2^{1525}} \cdot \frac{2^{1525}}{\ln \left(2^{1525}\right)}=\frac{1}{\ln \left(2^{1525}\right)}$

$$
=\frac{1}{(1525)(\ln 2)}
$$

. Sc average \#thes is $\frac{1}{\frac{1}{1525 \ln (2)}} \approx(1525)(\ln 2) \approx 1057$
7. [6 points] Alice claims to know the private key associated with public RSA key (N, e). To prove her claim, Alice offers to decrypt ciphertexts, so long as the corresponding plaintexts are random. So Bob may select a random $m_{0} \in \mathbb{Z}_{N}$ and use Alice's public key to compute the corresponding ciphertext c_{0}, which he sends to Alice. Alice uses her private key to decrypt c_{0} to recover m_{0}, and as long as m_{0} looks random, she completes the challenge by sending m to Bob.
Explain how Eve can exploit this system to decrypt a ciphertext c that she previously intercepted.

Eve picks a randan $k \in \mathbb{Z}_{N}^{*}$ at challenges Alice to decrypt $c k^{e}$.
Alize compites $\left(c k^{e}\right)^{d}=\left(m^{e} k^{e}\right)^{d}=(m k)^{e d}=m k$ in \mathbb{Z}_{N}.
Since mk looks random, she respals to Eve's Challenge. But
now Eve can compite k^{-1} in \mathbb{Z}_{N} al then recover m since

$$
(m k) k^{-1}=m
$$

8. Samantha uses ElGamal digital signatures, and her private signing key is given by $(p, g, a)=$ $(269,18,73)$. The following powers of g in \mathbb{Z}_{p} may be helpful.

t	1	2	4	8	16	32	64	128	256
$g^{t}(\bmod p)$	18	55	66	52	14	196	218	180	120

(a) [7 points] What is Samantha's public verification key?

$$
A=g^{a}=(18)^{73}=(18)^{64} \cdot(18)^{8} \cdot 18=(218) \cdot(52) \cdot 18=204048=146
$$

$$
73=64+8+1
$$

So the public verification key is $(p, 9, A)=(269,18,146)$
(b) [15 points] Samantha wishes to sign a document $D=134$, and she picks random element $k=37$. What is the signature $D_{\text {sig }}$ corresponding to D ?
In $\mathbb{Z}_{p}:$

$$
\begin{aligned}
& \left.\frac{\text { In } \mathbb{Z}_{p-1}}{S_{2}}=k^{-1}\left(D-a S_{1}\right) \quad\left(m_{0}\right) p-1\right) \\
& \frac{k^{-1} \text { in } \mathbb{Z}_{268}: \quad \operatorname{EEA}(37,268):}{268=(7)(37)+9 \quad 1=37+(-4)(9)} \begin{array}{l}
37=(4)(9)+1 \quad=37+(-4)[268+(-7)(37)] \\
\Rightarrow k^{-1}=29 \text { in } \mathbb{Z}_{p-1} \\
S_{2}=(29)(37)+(-4)(268) \\
=(139)(-11765)=(29)(27)=247
\end{array}
\end{aligned}
$$

$$
S_{1}=g^{k}(\bmod p)
$$

$$
=(18)^{37} \quad(\bmod 269)
$$

$$
37=32+4+1
$$

$$
\begin{aligned}
S_{1} & =(18)^{37}=(196)(66)(18) \\
& =163
\end{aligned}
$$

$$
\text { So } D_{\text {sig }}=\left(S_{1}, S_{2}\right)=(163,247)
$$

