Name: _

Directions: Show all work. No credit for answers without work.

1. [12 points] Let p = 409 and note that p is prime. Use the fast power algorithm to compute $(219)^{81}$ in \mathbb{F}_p .

- 2. [2 parts, 7 points each] Let p = 269 and note that p is a prime.
 - (a) What are the possible orders of elements in \mathbb{F}_p ?

(b) Suppose that g is a primitive root in \mathbb{F}_p and $g^a = g^b$ for some some integers a and b. What can we conclude about a and b?

- 3. [7 points] Alice and Bob switch to the Exclusive-OR cipher with key k = 100110. Alice receives the ciphertext c = 111000. What is the corresponding plaintext?
- 4. **[7 points]** Let p = 19. Compute $\log_3(7)$.

5. [2 parts, 6 points each] Alice and Bob use the Diffie Hellman secret key exchange protocol. They select p = 587 and g = 2. The following table of powers in \mathbb{F}_p may be helpful.

n	1	2	4	8	16	32	64	128	256	512
$(2)^{n}$	2	4	16	256	379	413	339	456	138	260
$(184)^n$	184	397	293	147	477	360	460	280	329	233
$(417)^n$	417	137	572	225	143	491	411	452	28	197

(a) Bob chooses private number b = 184. What should he send to Alice?

(b) Bob receives A = 417 from Alice. What is their shared secret key?

6. [2 parts, 12 points each] Alice and Bob use the ElGamal cipher, with p = 227 and g = 5. Alice picks a = 28 as her private key and in \mathbb{F}_p computes $A = g^a = 49$ as her public key. Bob picks b = 77 as his private key and computes $B = g^b = 106$. The following table of powers in \mathbb{F}_p may be helpful.

n	1	2	4	8	16	32	64	128
$(5)^{n}$	5	25	171	185	175	207	173	192
$(28)^n$	28	103	167	195	116	63	110	69
$(30)^n$	30	219	64	10	100	12	144	79
$(49)^n$	49	131	136	109	77	27	48	34
$(71)^n$	71	47	166	89	203	122	129	70
$(77)^n$	77	27	48	34	21	214	169	186
$(84)^n$	84	19	134	23	75	177	3	9
$(101)^n$	101	213	196	53	85	188	159	84
$(106)^n$	106	113	57	71	47	166	89	203

(a) Alice wishes to send Bob the message m = 30 and picks the random element t = 84. Using only information available to Alice, what does Alice send to Bob?

(b) Bob sends the ciphertext $(c_1, c_2) = (71, 100)$. Help Alice decrypt Bob's message.

- 7. Let p = 167 and let g = 24. We use Shanks's baby-step/giant-step algorithm to compute $\log_q(7)$ in \mathbb{F}_p . Note that g has order 83 in \mathbb{F}_p , and we may take $n = 1 + \lfloor \sqrt{83} \rfloor = 10$.
 - (a) [8 points] Compute List 1 (the baby-steps).

(b) [12 points] Compute List 2 (the giant-steps).

(c) [4 **points**] If it exists, find $\log_g(7)$.