Name: \qquad
Directions: Show all work. No credit for answers without work.

1. [12 points] Let $p=409$ and note that p is prime. Use the fast power algorithm to compute $(219)^{81}$ in \mathbb{F}_{p}.
2. [$\mathbf{2}$ parts, $\mathbf{7}$ points each] Let $p=269$ and note that p is a prime.
(a) What are the possible orders of elements in \mathbb{F}_{p} ?
(b) Suppose that g is a primitive root in \mathbb{F}_{p} and $g^{a}=g^{b}$ for some some integers a and b. What can we conclude about a and b ?
3. [7 points] Alice and Bob switch to the Exclusive-OR cipher with key $k=100110$. Alice receives the ciphertext $c=111000$. What is the corresponding plaintext?
4. [7 points] Let $p=19$. Compute $\log _{3}(7)$.
5. [2 parts, 6 points each] Alice and Bob use the Diffie Hellman secret key exchange protocol. They select $p=587$ and $g=2$. The following table of powers in \mathbb{F}_{p} may be helpful.

n	1	2	4	8	16	32	64	128	256	512
$(2)^{n}$	2	4	16	256	379	413	339	456	138	260
$(184)^{n}$	184	397	293	147	477	360	460	280	329	233
$(417)^{n}$	417	137	572	225	143	491	411	452	28	197

(a) Bob chooses private number $b=184$. What should he send to Alice?
(b) Bob receives $A=417$ from Alice. What is their shared secret key?
6. [2 parts, 12 points each] Alice and Bob use the ElGamal cipher, with $p=227$ and $g=5$. Alice picks $a=28$ as her private key and in \mathbb{F}_{p} computes $A=g^{a}=49$ as her public key. Bob picks $b=77$ as his private key and computes $B=g^{b}=106$. The following table of powers in \mathbb{F}_{p} may be helpful.

n	1	2	4	8	16	32	64	128
$(5)^{n}$	5	25	171	185	175	207	173	192
$(28)^{n}$	28	103	167	195	116	63	110	69
$(30)^{n}$	30	219	64	10	100	12	144	79
$(49)^{n}$	49	131	136	109	77	27	48	34
$(71)^{n}$	71	47	166	89	203	122	129	70
$(77)^{n}$	77	27	48	34	21	214	169	186
$(84)^{n}$	84	19	134	23	75	177	3	9
$(101)^{n}$	101	213	196	53	85	188	159	84
$(106)^{n}$	106	113	57	71	47	166	89	203

(a) Alice wishes to send Bob the message $m=30$ and picks the random element $t=84$. Using only information available to Alice, what does Alice send to Bob?
(b) Bob sends the ciphertext $\left(c_{1}, c_{2}\right)=(71,100)$. Help Alice decrypt Bob's message.
7. Let $p=167$ and let $g=24$. We use Shanks's baby-step/giant-step algorithm to compute $\log _{g}(7)$ in \mathbb{F}_{p}. Note that g has order 83 in \mathbb{F}_{p}, and we may take $n=1+\lfloor\sqrt{83}\rfloor=10$.
(a) [8 points] Compute List 1 (the baby-steps).
(b) [12 points] Compute List 2 (the giant-steps).
(c) $\left[4\right.$ points] If it exists, find $\log _{g}(7)$.

