Name: \qquad
Directions: Show all work. No credit for answers without work.

1. [3 parts, 2 points each] Consider the affine cipher with key $k=(\alpha, \beta)$ whose functions are given by $e_{k}(m)=\alpha m+\beta$ and $d_{k}(c)=\alpha^{-1}(c-\beta)$ in \mathbb{Z}_{m}.
(a) Specify the key space for this cipher as a product $A \times B$, where A is the set of all candidates for α and B is the set of all candidates for β.
(b) Let $m=38$, and let $k=(\alpha, \beta)=(15,6)$. Decrypt the ciphertext $c=22$.
(c) Eve obtains the plaintext/ciphertext pairs $(10,22)$ and $(15,25)$. Find the key (α, β).
2. [2 parts, 2 points each] Alice and Bob meet privately and decide to communicate using the exclusive-or cipher with a block size of 6 bits. They agree on a private key k.
(a) Alice sends the first ciphertext $c_{1}=100110$ to Bob, which Eve intercepts. What can Eve conclude about the corresponding plaintext message m_{1} ? Explain.
(b) Bob responds to Alice with the second ciphertext $c_{2}=011101$, which Even intercepts. What can Eve conclude about the corresponding plaintext messages m_{1} and m_{2} ? Explain.
