Name: Soltins

Directions: Show all work. No credit for answers without work.

- 1. [3 parts, 2 points each] Consider the affine cipher with key $k = (\alpha, \beta)$ whose functions are given by $e_k(m) = \alpha m + \beta$ and $d_k(c) = \alpha^{-1}(c \beta)$ in \mathbb{Z}_m .
 - (a) Specify the key space for this cipher as a product $A \times B$, where A is the set of all candidates for α and B is the set of all candidates for β .

$$A = \mathbb{Z}_{m}^{*}$$
 $B = \mathbb{Z}_{m}$, so $\mathcal{K} = \mathbb{Z}_{m}^{*} \times \mathbb{Z}_{m}$

(b) Let m = 38, and let $k = (\alpha, \beta) = (15, 6)$. Decrypt the ciphertext c = 22.

$$22 = q'M + \beta$$

$$22 = (15)m + 6$$

$$|5m = |6$$

$$Find (15)^{-1}: since modulus is not$$

$$prime, we need EEA.$$

$$38 = (2)(15) + 8$$

$$15 = (1)(8) + 7$$

$$8 = (1)(7) + 1$$

$$|= 8 + (-1)(7)$$

$$= 8 + (-1)(15)$$

$$= (2)(8) + (-1)(15)$$

$$= (2)(38) + (-2)(15)^{-1} + (-1)(15)$$

$$= (2)(38) + (-5)(15).$$

$$So (15)^{-1} = -5 \text{ ad}$$

$$15m = \frac{16}{15}$$

$$(-5)(15)m = (-5)(16)$$

$$1m = -80 = -80 + 114 = 34$$

(c) Eve obtains the plaintext/ciphertext pairs (10, 22) and (15, 25). Find the key (α, β) .

22 = $\alpha \cdot 10 + \beta$ 25 = $\alpha \cdot 15 + \beta$ 3 = 5 α We nead 5⁻¹ in 72m. Since (15)(-5) = 1 from part (b), we have (-15)(5) = 1 and so 5⁻¹ = -15. We compute $5\alpha = 3$ $\alpha = 3 \cdot 5^{-1} = 3 \cdot (-15)$ = -45 = -7 = 31

and
$$22 = (31)(10) + \beta$$

 $\beta = 22 - (31)(10)$
 $= 22 - (-7)(10)$
 $= 22 + 70 = 92 = 92 - 76 = 16$.
So the key is $(31, 16)$.

- 2. [2 parts, 2 points each] Alice and Bob meet privately and decide to communicate using the exclusive-or cipher with a block size of 6 bits. They agree on a private key k.
 - (a) Alice sends the first ciphertext $c_1 = 100110$ to Bob, which Eve intercepts. What can Eve conclude about the corresponding plaintext message m_1 ? Explain.

(b) Bob responds to Alice with the second ciphertext $c_2 = 011101$, which Even intercepts. What can Eve conclude about the corresponding plaintext messages m_1 and m_2 ? Explain.

Eve knows
$$100110 = M_1 \oplus k$$

 $011101 = M_2 \oplus k$.
Adding those together, Eve knows that
 $(M_1 \oplus k) \oplus (M_2 + k) = 100110$
 $\oplus 011101$
 $(M_1 \oplus M_2) \oplus (k \oplus k) = 111011$
 $M_1 \oplus M_2 \oplus 000000 = 111011$
 $M_1 \oplus M_2 \oplus 111011$.
Atthough Eve does not know M_1 or M_2 , she has significant, potentially
Compromising information about the plainboot messages