Name: Solutions
Directions: Show all work. No credit for answers without work.

1. [4 points] Let $p=41$ and note that p is prime. Use Fermat's Little Theorem and the fast power algorithm to find the inverse of 26 in \mathbb{Z}_{p}.

$$
\begin{aligned}
& (26)^{-1}=26^{p-2}=26^{39} \\
& -26^{2}=(-15)^{2}=225=61=20 \\
& 26^{4}=26^{2} \cdot 26^{2}=20 \cdot 20=400=-10=31 \\
& -26^{8}=26^{4} \cdot 26^{4}=(-10)(-10)=100=18 \\
& 26^{16}=26^{8} \cdot 26^{8}=18 \cdot 18=324=119=-4=37 \\
& 26^{32}=26^{16} \cdot 26^{16}=(-4)(-9)=16 \\
& 39=32+4+2+1 \\
& (26)^{39}=(26)^{32} \cdot(26)^{4} \cdot(26)^{2} \cdot 26 \\
& =16 \cdot(-10) \cdot(20) \cdot 26 \\
& =16 \cdot 26 \cdot(-200)=16 \cdot 26 \cdot 5 \\
& =16 \cdot 130=16 \cdot 7=70+42=70+1 \\
& =71=-11=30
\end{aligned}
$$

So the inverse of 26 is 30 . Check: $26 \cdot 30=(26)(-11)=-260-26=-55-26=-14-26=-40=1 \mathrm{~J}$.
2. [2 parts, $\mathbf{2}$ points each] Let $a=49$ and let $m=113$.
(a) Compute enough powers of a to determine the order of a in \mathbb{Z}_{m}. (Hint: the order of a is at most 10.)

k	1	2	3	4	5	6	7
a^{k}	49	28	16	106	109	30	(1) \quad So the order of a is 7.

(b) Let $n=372032$. Use part (a) to compute a^{n} in \mathbb{Z}_{m}.

Note: $n=\frac{(53147)}{q}(7)+3$, so 0
3. [2 points] Let $p=79$, and note that p is prime. According to Fermat's Little Theorem, what are the possible orders of elements in \mathbb{Z}_{p} ?
Since $a^{p-1}=1$ in \mathbb{Z}_{p} for all $a \in \mathbb{Z}_{p}^{*}$, it follows that every order divides $p-1$. Since $p-1=78=2 \cdot 39=2 \cdot 3 \cdot 13$, the possible orders are:

$$
1,2,3,13,6,26,39,78 \text {. }
$$

