Name: Solutions
Directions: Show all work. No credit for answers without work.

1. [2.5 points] Let a, b, and c be integers. Prove that if $a \mid b$ and $b \mid c$, then $a \mid c$.

Since $a l b$, we have $b=k a$ for save $k \in \mathbb{Z}$. Since b / c, we have $c=l b$ for save $l \in \mathbb{Z}$. If follows that

$$
c=l b=l(k a)=(l k) a .
$$

Since $l k$ and a are integers, we conclude that a / c.
2. [2.5 points] Let $a=9169, b=1007$, and let $d=\operatorname{gcd}(a, b)$. Use the extended Euclidean algorithm to compute d and integers u and v such that $d=u a+v b$.

$$
\begin{aligned}
& 9169=(9)(1007)+106 \\
& 1007=(9)(106)+53 \\
& 106=(2)(53)+0 \\
& d=\operatorname{gcd}(a, b)=\operatorname{gcd}(53,0)=53 .
\end{aligned}
$$

$$
\begin{aligned}
53 & =(1)(1007)+(-9)(106) \\
& =(1)(1007)+(-9)[9169-(9)(1007)] \\
& =\underbrace{(82)}_{v}(1007)+\underbrace{(-9)}_{u}(9169) .
\end{aligned}
$$

So $(d, u, v)=(53,-9,82)$ ad $53=(-9)(9169)+(82)(1007)$.
3. [2 parts, 2.5 points each] Consider the following 1-person game, played on the number line. Initially, the player begins at 0 . At each step, the player can move 525 units or 462 units in either direction.
(a) What is the smallest positive integer on which the player can land, and why?

Let $d=\operatorname{gcd}(525,462)$:

$$
\begin{aligned}
& 41 \\
& 525 \\
& 462 \\
& \hline 6^{3} \\
& 163 \\
& \frac{6}{378} \\
& 1512 \\
& 3+2 \\
& 378
\end{aligned}
$$

$$
\begin{gathered}
525=(1)(462)+63 \\
462=(7)(63)+21 \\
63=(3)(21)+0 \\
\operatorname{gcd}(525,462)=21
\end{gathered}
$$

The smallest pos. integer is 21 . Since 21 is a conman multiple of 525 ar 462, every integer that can be reached is a multiple of 21 , so no number in $\{1, \ldots, 20\}$ is reachable. Also, by taking 8 steps of 462 unit in the positive direction al 7 steps of. 525 units in the negative direction, we reach 21.
(b) What is the smallest positive even integer on which the player can land, and why?

This is 42, which equals 2 times 21. As in part (a), every reachable number is a multiple of 21 , at the smallest positive even multiple of 21 is 42 . We can reach 42 via doubling the equation that gets us to 21:

$$
\begin{aligned}
21 & =(-7)(525)+(8)(462) \\
2 \cdot 21 & =(2 \cdot(-7))(525)+(2 \cdot 8)(462) \\
42 & =(-14)(525)+(16)(462)
\end{aligned}
$$

