Name: Solutions

Directions: Show all work. No credit for answers without work.

1. [2 parts, $\mathbf{4}$ points each] Let $p=67$ and let E be the elliptic curve given by $y^{2}=x^{3}+9 x+33$ over \mathbb{F}_{p}. Let $P=(42,53)$ and $Q=(62,8)$. Compute the following points.
(a) $P^{2} \quad y^{2}=x^{3}+A x+B, \quad 2 y \frac{d y}{d x}=3 x^{2}+A$ $\lambda=\frac{3 x_{1}^{2}+A}{2 y_{1}}=\frac{3(42)^{2}+9}{2(53)}=\frac{5301}{106}=\frac{8}{39}=8 \cdot(39)^{-1}=8 \cdot(-12)=8 \cdot 55=38$.

ERA $(67,39)$:
$x_{3}=\lambda^{2}-x_{1}-x_{2}$
$67=(1)(39)+28 \quad \begin{aligned} 1 & =6+(-1)(5)=6+(-1)[11+(-1)(6)] \\ & =(2)(6)+(-1)(11)=(2)[28+(-2)(11)]+(-1)(11)\end{aligned}$
$39=(1)(28)+11=(2)(28)+(-5)(11)=(2)(28)+(-5)[39+(-1)(28)]$
$28=(2)(11)+6=(7)(28)+(-5)(39)=7(67+(-1)(39))+(-5)(39)$
$11=(1)(6)+5$
$6=(1)(5)+1$
$=(7)(67)+(-12)(39)$
$=(38)^{2}-42-42=1360=20$

$$
y_{3}=\lambda\left(x_{1}-x_{3}\right)-y_{1}=(38)(42-20)-53
$$

$$
=38(22)-53=783=46
$$

$$
\text { So } P^{2}=(20,46)
$$

(b) $\frac{P}{Q}$ and $\frac{Q}{P}$
$\frac{P}{Q}=P \cdot Q^{-1}=(42,53) \cdot(62,8)^{-1}=(42,53) \cdot(62,-8)=(42,53) \cdot(62,59)$.
$\lambda=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{59-53}{62-42}=\frac{6}{20}=\frac{2 \cdot 3}{2 \cdot 10}=3 \cdot(10)^{-1}=3 \cdot(-20)=3 \cdot 47=7$.

$$
\begin{aligned}
& x_{3}=\lambda^{2}-x_{1}-x_{2} \\
&=7^{2}-42-62=-55 \\
&=12 \\
& y_{3}=\lambda\left(x_{1}-x_{3}\right)-y_{1} \\
&=7(42-12)-53 \\
&=7(30)-53=157=23 \\
& \text { So } \frac{P}{Q}=(12,23)
\end{aligned}
$$

EEA (67, 10):
$67=(6)(10)+7 \quad 1=7+(-2)(3)=7+(-2)[10+(-1)(7)]$
$\left.\left.\begin{array}{l|l}67=(6)(10)+7 \\ 10=(1)(7)+3 \\ 7=(2)(3)+1\end{array} \right\rvert\,=(3)(7)+(-2)(10)=3(67+(-6)(10))+(-2)(6)\right)$
Also, $\frac{Q}{P}=\left(\frac{P}{Q}\right)^{-1}=((12,23))^{-1}=(12,-23)=(12,44)$
2. [2 points] Let $p=11$, let $P=(1,2)$ and $Q=(2,3)$. Find A and B such that P and Q are both on the elliptic curve over \mathbb{F}_{p} given by $y^{2}=x^{3}+A x+B$.

$$
\begin{aligned}
& P=(1,2): \quad 2^{2}=1^{3}+A(1)+B \quad \text { So } A=9, B=5 \\
& \text { a) } E \text { is } \\
& y^{2}=x^{3}+9 x+5 \\
& \begin{array}{c}
Q=(2,3): \quad 3^{2}=2^{3}+A(2)+B \\
2 A+B=1
\end{array} \\
& A=-2=9 \\
& B=3-A=3-9=-6=5
\end{aligned}
$$

