Name: Solutions
Directions: Show all work. No credit for answers without work.

1. [$\mathbf{3}$ parts, $\mathbf{1}$ point each] Simplify the following expressions if possible.

$$
\begin{aligned}
& \text { (a) } \frac{\left(x^{2} \cdot x^{3}\right)^{5}}{x^{6}+x^{7}} \\
= & \frac{\left(x^{2+3}\right)^{5}}{x^{6}(1+x)} \\
= & \frac{\left(x^{5}\right)^{5}}{x^{6}(1+x)} \\
= & \frac{x^{25}}{x^{6}(1+x)}=\frac{x^{19}}{1+x}
\end{aligned}
$$

(b) $\sqrt{x^{2}+y^{2}}$

No simplification positive

Nile:

$$
\begin{aligned}
& \sqrt{A+B} \neq \sqrt{A}+\sqrt{B} \text { Also } O K: \frac{2 x+15}{x+5}=\frac{2(x+5)+5}{x+5} \\
&=\frac{2(x+5)}{x+5}+\frac{5}{x+5}=2+\frac{5}{x+5}
\end{aligned}
$$

2. [2 parts, 1 point each] Find the derivatives of the following functions.
(a) $f(x)=\ln \left(e^{x}+\ln (x)\right)$

By chain Rule

$$
\begin{aligned}
f^{\prime}(x)=\frac{d}{d x}\left[\ln \left(e^{x}+\ln (x)\right)\right] & =\frac{1}{e^{x}+\ln (x)} \cdot \frac{d}{d x}\left[e^{x}+\ln (x)\right] \\
& =\frac{1}{e^{x}+\ln (x)} \cdot\left(e^{x}+\frac{1}{x}\right) \\
& =\frac{e^{x}+\frac{1}{x}}{e^{x}+\ln (x)}=\frac{x\left(e^{x}+\frac{1}{x}\right)}{x\left(e^{x}+\ln (x)\right)}=\frac{x e^{x}+1}{x\left(e^{x}+\ln (x)\right)}
\end{aligned}
$$

(b) $g(x)=x^{\sin (x)}$

Use implicit differentiation:

$$
\begin{gathered}
\ln g(x)=\ln \left[x^{\sin (x)}\right] \\
\ln (g(x))=(\sin (x)) \cdot \ln (x) \\
\frac{d}{d x}[\ln (g(x))]=\frac{d}{\partial x}[\sin (x) \cdot \ln (x)] \\
\frac{1}{g(x)} \cdot g^{\prime}(x)=(\cos x)(\ln (x))+\sin (x) \cdot \frac{1}{x}
\end{gathered}
$$

So $g^{\prime}(x)=g(x) \cdot\left(\cos (x) \ln (x)+\frac{\sin x}{x}\right)$

$$
=x^{\sin (x)}\left(\cos (x) \ln (x)+\frac{\sin x}{x}\right)
$$

3. [2 points] The function f takes an array of integers as input. Let $B=[2,5,3,6]$; here array indexing starts with 1 , so that $B[1]=2$ and $B[4]=1$. What does f return when called with input B ? Explain your solution for partial credit.

$$
S=0
$$

$$
\begin{aligned}
& \frac{f(A[1 . . n]):}{s \leftarrow 0} \\
& \text { for } i=1 \text { to } n \text { : } \\
& \quad \text { if } i \text { is even: } \\
& \quad s \leftarrow s+i \cdot A[i] \\
& \quad \text { else: } \\
& \quad s \leftarrow s-i \cdot A[i] \\
& \text { return } \mathrm{s}
\end{aligned}
$$

4. [3 points] Given an array $A[1 . . n]$ of distinct integers in sorted order and an integer x, the function $\operatorname{find}(A[1 . . n], x)$ should return True if x is one of the values in A and False otherwise. Give a pseudocode implementation of $\operatorname{find}(A[1 . . n], x)$. A correct implementation is worth 2 points; a correct, efficient implementation is worth 3 points.

Correct but inefficient $O(n)$ algorithm:

$$
\operatorname{fin}(A[\ldots n], x):
$$

for $i=1$ to n :

$$
\text { if } A[i]=x:
$$

return True
return False

Correct, efficient $O(\log n)$ algorithm - Binary Search

$$
\frac{\text { find }(A[1 . . n], x):}{l b \leftarrow 0, u b \leftarrow n+1}
$$

while $(u b-l b) \geq 2$:

$$
\operatorname{mid} \leftarrow l b+\left\lfloor\frac{u_{b}-l b}{2}\right\rfloor
$$

$$
\text { if } A[m ; i]=x \text { : }
$$

return True
else if $A[$ mid $]<x$:

$$
l b \leftarrow \operatorname{mid}
$$

els:

$$
\| A[m \cdot d]>x
$$

$$
u b \leftarrow \operatorname{mid}
$$

return False

