Directions: Solve the following problems. All written work must be your own. See the course syllabus for detailed rules.

1. [JJJ 3.1] Solve the following congruences.
(a) $x^{19} \equiv 36(\bmod 97)$.
(b) $x^{137} \equiv 428(\bmod 541)$.
(c) $x^{73} \equiv 614(\bmod 1159)$.
(d) $x^{751} \equiv 677(\bmod 8023)$.
(e) $x^{38993} \equiv 328047(\bmod 401227)$. Hint: $401227=607 \cdot 661$.
2. [JJJ 3.6] Alice publishes her RSA public key $(N, e)=(2038667,103)$.
(a) Bob wants to send Alice the message $m=892383$. What ciphertext does Bob send to Alice?
(b) Alice knows that her modulus factors into a product of two primes, one of which is $p=1301$. Find a decryption exponent d for Alice.
(c) Alice receives the ciphertext $c=317730$ from Bob. Decrypt the message.
3. [JJJ 3.7] Bob's RSA public key has modulus $N=12191$ and exponent $e=37$. Alice sends Bob the ciphertext $c=587$. Unfortunately, Bob has chosen too small a modulus. Help Eve by factoring N and decrypting Alice's message. Hint: N has a factor that is less than 100 .
4. [JJJ 3.8] For each of the given values $N=p q$ and $N^{\prime}=(p-1)(q-1)$, use the method in the proof that FactorN is at least as easy as ComputeN' to find p and q.
(a) $N=352717$ and $N^{\prime}=351520$
(b) $N=28424293$ and $N^{\prime}=28411488$
(c) $N=111702827046011$ and $N^{\prime}=111702805302024$.
5. Consider the following two problems.

FactorN Given an integer N that is the product of distinct, unknown primes p and q, output p and q.

Reduce Given an integer a and an integer N that is the product of distinct, unknown primes p and q with $p<q$, output $b \in \mathbb{Z}_{p}$ and $c \in \mathbb{Z}_{q}$ such that $a \equiv b(\bmod p)$ and $a \equiv c(\bmod q)$.
(a) Prove that Reduce \leq FactorN.
(b) Prove that FactorN \leq Reduce.
(c) Illustrate part (b) by factoring $N=446846784807308867$. Given $a=723728945230$ and N, your black box for Reduce reports that $a \equiv 299450419(\bmod p)$ and $a \equiv 316955067$ $(\bmod q)$.
6. Suppose we know $N=p q r$, where p, q, and r are large, distinct, unknown primes. Somehow, we also know $N^{\prime}=(p-1)(q-1)(r-1)$.
(a) Use CRT to show that if $\operatorname{gcd}(a, N)=1$, then $a^{N^{\prime}} \equiv 1(\bmod N)$.
(b) Show that if $z^{2} \equiv 1(\bmod N)$ but $z \not \equiv 1(\bmod N)$ and $z \not \equiv-1(\bmod N)$, then either $\operatorname{gcd}(z+1, N)$ or $\operatorname{gcd}(z-1, N)$ equals one of the three prime factors of N.

Comment: if we pick a random nonzero $a \in \mathbb{Z}_{N}$, then it is very likely that $a \in \mathbb{Z}_{N}^{*}$ (and if not, then $\operatorname{gcd}(a, N)$ will give a nontrivial factor of N, such as p or $q r)$. For $a \in \mathbb{Z}_{N}^{*}$, we know $a^{N^{\prime}} \equiv 1(\bmod N)$. Consider the sequence $a^{N^{\prime}}, a^{N^{\prime} / 2}, \ldots, a^{N^{\prime} / 2^{t}}$, where t is the number of two's in the prime factorization of N^{\prime}. It can be shown that with probability at least $3 / 4$, there exists j with $0 \leq j<t$ such that $a^{N^{\prime} / 2^{j}} \equiv 1(\bmod N)$ but $a^{N^{\prime} / 2^{j+1}} \not \equiv 1(\bmod N)$ and $a^{N^{\prime} / 2^{j+1}} \not \equiv-1(\bmod N)$.
7. We are given integers N and N^{\prime} below, where $N=p q r$ for distinct primes p, q, and r, and $N^{\prime}=(p-1)(q-1)(r-1)$. Use the technique discussed in the previous problem to factor N into p, q, and r.

$$
\begin{aligned}
N= & 72574282558749478121831961777522352979922891373732 \\
& 52640081888768849043774022906446542805410221085953 \\
& 00320753253765830617357759810616109946937994358826 \\
& 06986514546697691739228771789807430161740480008459 \\
& 94519388579818777093657700884011035146955891511632 \\
& 70929871604931894785301810967243572125489584556940 \\
& 45473107493737916010001372683015487240076263495755 \\
& 41741391564430620495878448206248824390176132499743 \\
& 08464723507896655471450786645437290981254061675506 \\
& 591968920507 \\
N^{\prime}= & 72574282558749478121831961777522352979922891373732 \\
& 52640081888768849043774022906446542805410221085953 \\
& 00320753253765830617357759810616109946937994358826 \\
& 06962150459726539985546509445091036999523033880687 \\
& 58640992957060218013371880785638527490838866766191 \\
& 73477424917381568854124195679472206337664104285772 \\
& 87792424246967982171313723487443851203509397176816 \\
& 39436095420869102811572345353957338637093468469585 \\
& 20585013311419045148556822618738932355904529716212 \\
& 332777917280
\end{aligned}
$$

