Directions: Solve the following problems. All written work must be your own. See the course syllabus for detailed rules.

- 1. The Discrete Logarithm. Evaluate the following in \mathbb{F}_{23} .
 - (a) $\log_{14}(22)$
 - (b) $\log_{15}(8)$
- 2. Modular exponentiation cipher. Consider the cipher where \mathcal{K} is the set of primitive roots in \mathbb{F}_p , $\mathcal{M} = \mathbb{Z}_{p-1}$, $\mathcal{C} = \mathbb{F}_p^*$, and $e_k(m) = k^m$ in \mathbb{F}_p .
 - (a) Alice and Bob choose p = 11 and k = 2. Find the order of k in \mathbb{F}_p . Is k a primitive root? Encrypt the message 6 and decrypt the message 3.
 - (b) Prove that the encryption function is injective, and describe the decryption function.
 - (c) Does this cipher have property (1) (i.e. given $k \in \mathcal{K}$ and $m \in \mathcal{M}$, it is easy to compute $e_k(m)$)? Does it have property (2) (i.e. given $k \in \mathcal{K}$ and $c \in \mathcal{C}$, it is easy to compute $d_k(c)$)?
 - (d) Here, we illustrate that this cipher is vulnerable to a chosen plaintext attack. Alice and Bob choose p = 2687 and a secret key. Eve manages to discover the plaintext/ciphertext pairs (1866, 1864) and (1231, 2565). Find the secret key k.
 - (e) In part (d), the intention is to find the secret key k by using an efficient attack, but the numbers are small enough that you could find k using brute force. Carry out the attack again with p and plaintext/ciphertext pairs $(m_1, c_1), (m_2, c_2)$ as shown below.

p = 49651418153203334334343025759447351841028834755961145327 $m_1 = 1442506475715854841019941447847762099575753178605423941$ $c_1 = 11799308873252204640351057233329997891282186998411681189$ $m_2 = 8741291516595786171636620315162766721085153317204173630$ $c_2 = 35688851452468689917269021024163741705031317552447325666$

3. Diffie–Hellman Key Exchange. Alice and Bob select and publish

$$p = 918398656403699$$
$$g = 581330380946540.$$

- (a) Alice selects the secret integer a = 382114. Compute $A = g^a$. Alice sends A to Bob.
- (b) Bob selects the secret integer b = 1744891346. Compute $B = g^b$. Bob sends B to Alice.
- (c) What modular computation does Alice perform to obtain the shared secret? As Alice, compute the shared secret.
- (d) What modular computation does Bob perform to obtain the shared secret? As Bob, compute the shared secret.