Directions: Solve the following problems. All written work must be your own. See the course syllabus for detailed rules.

1. [JJJ 1.41] Consider the affine cipher with key $k=(\alpha, \beta)$ whose encryption and decryption functions are given by

$$
\begin{aligned}
e_{k}(m) & \equiv \alpha m+\beta \quad(\bmod p) \\
d_{k}(c) & \equiv \alpha^{-1}(c-\beta) \quad(\bmod p)
\end{aligned}
$$

(a) Let $p=541$ and let $k=(34,71)$. Encrypt the message $m=204$. Decrypt the ciphertext $c=431$.
(b) Assuming that p is public knowledge, explain why the affine cipher is vulnerable to a chosen plaintext attack. How many plaintext/ciphertext pairs are likely to be needed to recover the private key?
(c) Alice and Bob decide to use the prime $p=601$ for their affine cipher. The value of p is public knowledge. Eve intercepts the ciphertexts $c_{1}=324$ and $c_{2}=381$, and she also manages to discover that the corresponding plaintexts are $m_{1}=387$ and $m_{2}=491$. Determine the private key (α, β) and then use it to encrypt the message $m_{3}=173$.
2. [JJJ 1.43] Let n be a large integer and let $\mathcal{K}=\mathcal{M}=\mathcal{C}=\mathbb{Z}_{n}$. For each of the functions below, answer the following questions.

- Is e an encryption function? In other words, can we always recover the plaintext $m \in \mathcal{M}$ given $e_{k}(m)$, or are there distinct m_{1} and m_{2} such that $e_{k}\left(m_{1}\right)=e_{k}\left(m_{2}\right)$? (Or, for the mathematically inclined, we ask is $e_{k}: \mathcal{M} \rightarrow \mathcal{C}$ is an injective function?)
- If e is an encryption function, what is the associated decryption function d ?
- If e is not an encryption function, can you make it into an encryption function by restricting the set of keys \mathcal{K} to a smaller, but still reasonably large subset?
(a) $e_{k}(m) \equiv k-m(\bmod n)$
(b) $e_{k}(m) \equiv k \cdot m(\bmod n)$
(c) $e_{k}(m) \equiv(k+m)^{2}(\bmod n)$

3. [JJJ 1.46] Explain why the exclusive-or cipher is not secure against a chosen plaintext attack. Demonstrate the attack by computing the key given the plaintext/ciphertext pair with $m=$ 1100101001 and $c=0011001100$).
4. [JJJ 1.48] Why modular arithmetic? Alice and Bob decide to use a multiplicative cipher that does not involve modular arithmetic. That is, they use $\mathcal{K}=\{p: p$ is a prime $\}, \mathcal{M}=\mathcal{C}=$ $\{1,2,3, \ldots\}$, and

$$
e_{k}(m)=k m \quad d_{k}(c)=c / k .
$$

Eve intercepts the following ciphertexts:

$$
c_{1}=19157632841654891 \quad c_{2}=39493517444969867 \quad c_{3}=32351977451572789
$$

Illustrate that this cipher lacks property (3) by finding the key k.

