Directions: Solve the following problems. All written work must be your own. See the course syllabus for detailed rules.

1. Make a multiplication table for the unit group \mathbb{Z}_{9}^{*}. What is $\phi(9)$?
2. Modular exponentiation in \mathbb{Z}_{7}.
(a) Fill in the table so that row a and column k contains a^{k}, where $a^{k} \in \mathbb{Z}_{7}$.

a^{k}	0	1	2	3	4	5	6	7	\cdots
0	1	0	0	0	0	0	0	0	
1									
2									
3									
4									
5									
6									

(b) The order of an element $a \in \mathbb{Z}_{m}^{*}$ is the smallest positive integer k such that $a^{k}=1$ in \mathbb{Z}_{m}. Find the unit group \mathbb{Z}_{7}^{*}, and for each $a \in \mathbb{Z}_{7}^{*}$, find the order of a.
(c) An element $a \in \mathbb{Z}_{7}$ is a primitive root if its order equals $\left|\mathbb{Z}_{7}^{*}\right|$; that is, if the sequence $a^{0}, a^{1}, a^{2}, \ldots$ contains each element in \mathbb{Z}_{7}^{*}. Use the table to find all primitive roots in \mathbb{Z}_{7}^{*}. Verify that the number of primitive roots equals $\phi(6)$.
3. Use the fast power algorithm to compute $2^{300}(\bmod 1000)$. Show intermediate powers of 2 .
4. Common divisors divide the gcd.
(a) Let a and b be integers and let $d=\operatorname{gcd}(a, b)$. Prove that if ℓ is a common divisor of a and b, then $\ell \mid \operatorname{gcd}(a, b)$.
(b) Let a, b, g, and m be integers such that $g^{a} \equiv 1(\bmod m)$ and $g^{b} \equiv 1(\bmod m)$. Prove that $g^{\operatorname{gcd}(a, b)} \equiv 1(\bmod m)$.

